Abstract:
A system and method for electrically controlling a position of a combustion reaction and/or for protecting a flame controller by decoupling an ionizer from a power supply.
Abstract:
A multijet burner system includes a plurality of fuel nozzles, each configured to support a respective flame, a plurality of charge electrodes, each positioned and configured to apply a charge potential to a fluid flow corresponding to a respective one of the plurality of fuel nozzles, and a charge controller operatively coupled to each of the plurality of charge electrodes and configured to control a voltage potential applied to each respective charge electrode. By selecting the magnitude and polarity of a charge potential applied to individual ones of the flames of the plurality of burners, the flames can be made to change positions, move to selected positions, and redistribute themselves within a volume.
Abstract:
A burner system and a retrofit flame control system for an existing burner system are disclosed. The burner system may include burner components, electrodynamic components, and a data interface. The data interface may receive a command for controlling the burner components and prepare a command for controlling the electrodynamic components at least partially based on the command for controlling the burner components.
Abstract:
An electrically stabilized burner is configured to support a combustion reaction such as a combustion reaction substantially at a selected fuel dilution and with a mixing rate selected to maximize the reaction rate without quenching the combustion reaction.
Abstract:
A burner system and a retrofit flame control system for an existing burner system are disclosed. The burner system may include burner components, electrodynamic components, and a data interface. The data interface may receive a command for controlling the burner components and prepare a command for controlling the electrodynamic components at least partially based on the command for controlling the burner components.
Abstract:
Technologies are provided for employing an ion flow to control a combustion reaction. A combustion reaction is supported at a burner or fuel source. One or more electrical signals are applied to an ionizer to generate an ion flow having a first polarity. The ion flow is introduced to the combustion reaction or a reactant at a first location, imparting a corresponding charge to the combustion reaction. The first location is at least intermittently upstream with respect to a reaction front of the combustion reaction. One or more of the electrical signals are applied to a first electrode at a second location downstream of the first location, which provokes a response by the combustion reaction according to the applied charge. The combustion reaction is controlled by selection of the one or more electrical signals.
Abstract:
A method and apparatus for controlling a combustion reaction includes steps and structures for applying an electric field across a combustion reaction. Application of the electric field results in broadening the flammability and stability limits of the fuel.
Abstract:
A method for operating a combustion system includes outputting fuel and oxidant from a fuel and oxidant source onto a perforated flame holder. The method further includes sustaining a combustion reaction of the fuel and oxidant within the perforated flame holder.
Abstract:
Embodiments are directed to a gasifier that electrodynamically agitates charged chemical species in a reaction region of a reaction vessel of a gasifier and related methods. In an embodiment, a gasifier includes a reaction vessel configured to gasify at least one hydrocarbon-containing feed material to synthesis gas. The reaction vessel includes an inlet(s) for receiving a gasification medium that reacts with the at least one hydrocarbon-containing feed material and an outlet for allowing the synthesis gas to exit from the reaction vessel, and a reaction region. The gasifier includes at least one electrode positioned to be in electrical communication with the reaction region, and a voltage source operatively coupled to the at least one electrode. The voltage source and the at least one electrode are cooperatively configured to generate a time varying electric field in the reaction region to effect electrodynamic mixing of charged chemical species therein during gasification.
Abstract:
A horizontally-fired flame burner includes a flame holder positioned laterally from the burner. The flame holder includes a plurality of perforations that collectively confine a combustion reaction of the burner to the flame holder.