Abstract:
Techniques for using a narrow filter located before a power amplifier to reduce interference in an adjacent frequency band are disclosed. In an exemplary design, an apparatus (e.g., a wireless device) includes the narrow filter and the power amplifier. The narrow filter is for a first frequency band (e.g., Band 40) and has a first bandwidth that is more narrow than the first frequency band. The narrow filter receives and filters an input radio frequency (RF) signal and provides a filtered RF signal. The power amplifier receives and amplifies the filtered RF signal and provides an amplified RF signal. The apparatus may further include a full filter for the first frequency band and located after the power amplifier. The full filter receives and filters the amplified RF signal and provides an output RF signal when it is selected for use.
Abstract:
A display panel includes an amorphous silicon gate driver in which a lower voltage than the gate-off voltage output from the gate driver is applied to an adjacent stage as a low voltage transmission signal.
Abstract:
An organic light emitting element includes a first electrode, a second electrode, and an organic layer. The organic layer includes a first emission layer between the first electrode and the second electrode, a second emission layer between the first emission layer and the second electrode, and an electron injection layer (EIL) between the first emission layer and the second emission layer, the electron injection layer (EIL) containing fullerene (C60).
Abstract:
An organic light emitting diode display is disclosed. The display includes some pixel areas which are opaque and some pixel areas which are partially opaque and partially transparent. Selectively displaying the light emission of the pixel areas allows for control of the relative brightness of a displayed image and an object behind the display.
Abstract:
In a composition of forming a passivation layer, the composition includes about 30 to about 60 percent by weight of a mixed polymer resin formed by blending polyamic acid and polyhydroxy amide, about 3 to about 10 percent by weight of a photoactive compound, about 2 to about 10 percent by weight of a cross-linking agent and an organic solvent. The passivation layer formed by using the composition has superior mechanical and physical properties, in which disadvantages of polyimide and polybenzoxazole are compensated by mixing both materials.
Abstract:
Embodiments of the present invention are directed to heteroarylamine compounds and organic luminescence devices including the heteroarylamine compounds. The organic luminescence devices using the heteroarylamine compounds have high-efficiency, low driving voltages, high luminance and long lifetimes. The heteroarylamine compounds are represented by the following formula:
Abstract:
A multi-throw antenna switch with off-state capacitance reduction is disclosed. In an exemplary embodiment, an apparatus is provided that includes a plurality of first stage switches connected to an antenna, and a plurality of second stage switches connected to the plurality of first stage switches, each first stage switch connected in series to one or more second stage switches to form a plurality of switchable signal paths connected to the antenna.
Abstract:
An organic light emitting display device includes a substrate having a transmitting region interposed between pixel regions; thin film transistors on a first surface of the substrate; a passivation layer covering the thin film transistors; pixel electrodes on the passivation layer; an opposite electrode disposed to face the pixel electrodes; an organic emission layer between the pixel electrodes and the opposite electrode; a polymer dispersed liquid crystal (PDLC) device disposed such that the thin film transistors are between the PDLC device and the passivation layer, the PDLC device having: a first electrode; a second electrode; and a PDLC layer in which liquid crystal is dispersed in polymer matrix. Distortion of images transmitted through the organic light emitting display device is prevented by restricting scattering of the transmitted light, the transmission of the external light may be adjusted simply, and degradation of the brightness and color coordinate reproduction may be prevented.
Abstract:
A color filter array is provided that is capable of implementing full color with improved light-emitting efficiency and color coordinate values from a mixed light of blue and red, and an organic light-emitting display device using the same. A color filter array receiving a mixed light of blue wavelength light and red wavelength light to implement full color according to an embodiment of the invention comprises a red filter, a green filter, and a blue filter. The red filter includes a first color conversion material for converting the blue wavelength light into green light and red light and a green blocking material for blocking the green light. The green filter includes a second color conversion material for converting the blue wavelength light into green light and red light and a red blocking material for blocking the red light. The blue filter includes a red blocking material for blocking the red wavelength light.
Abstract:
An organic light emitting diode (OLED) including: a substrate; a reflection layer on the substrate and including metal; a first electrode on the reflection layer and including a light transparent aluminum zinc oxide (AZO); an organic layer on the first electrode and including an emitting layer; and a second electrode on the organic layer and including a semi-transparent reflection layer.