Abstract:
A memory circuit includes a first memory array. The first memory array includes at least one first memory cell for storing a first datum. The at least one first memory cell is coupled with a first word line and a second word line. A second memory array is coupled with the first memory array. The second memory array includes at least one second memory cell for storing a second datum. The at least one second memory cell is coupled with a third word line and a fourth word line. The first word line is coupled with the third word line. The first word line is misaligned from the third word line in a routing direction of the first word line in the first memory array.
Abstract:
An integrated circuit includes at least one memory array for storing data. A first switch is coupled with the memory array. A first power line is coupled with the first switch. The first power line is operable to supply a first power voltage. A second switch is coupled with the memory array. A second power line is coupled with the second switch. The second power line is operable to supply a second power voltage for retaining the data during a retention mode. A third power line is coupled with the memory array. The third power line is capable of providing a third power voltage.
Abstract:
A word-line tracking system for a memory array having a plurality of memory cells, the word-line tracking system comprises a dummy row having substantially identical structure as one or more regular rows of the memory cells, the dummy row including a dummy word-line having a first and a second end at the opposite longitudinal ends of the dummy word-line, the first end being connected to a word-line driver, a self timing generator configured to receive a clock signal and generate a pulse signal in sync with the clock signal for the dummy word-line driver, the self timing generator having a first terminal for receiving a feedback signal to determine the falling edge of the pulse signal, a voltage-to-current converter connected to the second end of the dummy word-line, a current-to-voltage converter connected to the feedback terminal, and a wire connecting the voltage-to-current converter to the current-to-voltage converter.
Abstract:
A semiconductor memory is disclosed, which comprises a plurality of memory cells, at least one high voltage power supply (CVDD) line coupled to the plurality of memory cells for supplying power to the same, and at least one controllable discharging circuit coupled between the CVDD line and a complementary low voltage power supply (ground), wherein only during a write operation the controllable discharging circuit is turned on for discharging the CVDD line.
Abstract:
A circuit and method for providing a sense amplifier for a DRAM memory with reduced distortion in a control signal, the sense amplifier particularly useful for embedding DRAM memory with other logic and memory functions in an integrated circuit. A sense enable circuit is provided for a differential sensing latch in a sense amplifier having a cascade coupled pair of transistors, each transistor receiving a separate control signal. The separate control signals are provided by a control circuit with a delayed overlap. Differential sensing is enabled when the delayed overlap exists between the separate control signals. An array of DRAM memory cells are coupled to a plurality of the sense amplifiers. The DRAM memory incorporating the sense amplifiers may be embedded with other circuitry in an integrated circuit. Methods for providing the control signals and for laying out the DRAM memory with the sense amplifiers are provided.
Abstract:
This invention discloses a power supply management circuit which comprises at least one switching circuit coupled between a power supply and a power recipient circuit, and at least one voltage booster circuit coupled between a control circuit and the power recipient circuit, wherein the control circuit is configured to turn on-or-off the switching circuit, and to activate or de-activate the voltage booster circuit.
Abstract:
A circuit and method for providing a two phase word line pulse for use during access cycles in an SRAM memory with improved operating margins. A first and a second timing circuit are provided and a word line voltage suppression circuit is provided to reduce the voltage on the active word lines in a first phase of a word line pulse, and to allow the word lines to rise to a second, unsuppressed voltage in a second phase of the word line pulse, responsive to the first and second timing circuits. The first and second timing circuits observe the bit lines voltage discharge and provide control signals active when the bit lines are discharged past certain thresholds, these signals control the voltage suppression circuit. Operating margins for the SRAM are therefore improved. Methods for operating an SRAM using a two phase word line pulse are provided.
Abstract:
A word-line driver has an input from a word-line decoder and an output to drive a word-line. The word-line driver comprises a plurality of inverters connected in series between the input and output including a first and a second inverter with a first node designating an output of the first inverter and an input of the second inverter, the first inverter having a NMOS transistor with a controllable first source, and a first pull-up circuitry coupled between a positive supply voltage and the first node and selectively activated by a first control signal, wherein when the first source is set to the positive supply voltage and the first control signal is set to a complementary supply voltage of the positive supply voltage, the first node is pulled up to the positive supply voltage to ensure an output of the second inverter is pulled down to the complementary supply voltage.
Abstract:
A memory device includes a memory array, an I/O circuit for accessing the memory array, and a tracking circuit. The tracking circuit includes a dummy bit line, a first tracking cell including a first NMOS transistor, the first tracking cell being coupled to receive a control signal and also coupled to the dummy bit line through the first NMOS transistor, and a second tracking cell including a second NMOS transistor, the second tracking cell being coupled to receive the control signal and also coupled to the dummy bit line through the second NMOS transistor, a gate of the second NMOS transistor being coupled to the dummy bit line. The memory device also includes a control circuit coupled to the dummy bit line for generating a clock signal for the I/O circuit.
Abstract:
A memory access method and a memory system are disclosed for shortening a memory cell access time. The memory system comprises one or more memory cells, at least one bit-line discharge subsystem having one or more discharge modules, each discharge module coupled to a bit-line connecting to one or more memory cells for discharging a voltage level of the bit-line upon a triggering of a discharge control signal, at least one sense amplifier coupled to the bit-line for determining data stored in a selected memory cell, at least one latch module for storing the determined data from the sense amplifier upon a triggering of a latch enable signal, wherein the discharge control signal is triggered prior to the triggering of the latch enable signal so that the voltage level of the bit-line is discharged for allowing an accelerated reading of the data.