摘要:
The method of the invention involves depositing a plurality of thin layers of film, each layer having a thickness ranging from about 500Å to about 2000Å. Low Pressure Chemical Vapor Deposition or other techniques known in the art maybe used to deposit each thin layer of film. The film is polysilicon or silicon-germanium, where the germanium content ranges from about 4% by weight to about 20% by weight germanium. A Rapid Thermal Anneal (“RTA”) is performed on a deposited thin film layer to relieve residual film stress in at least that film layer. The use of RTA rather than furnace annealing permits much shorter annealing times. Optionally, but advantageously, hydrogen may be present during RTA to permit the use of lower processing temperatures, typically about 20% lower relative to a customary anneal. A series of film deposition/rapid thermal anneal cycles is used to produce the desired, nominal total thickness polysilicon film. This method is generally useful for producing polysilicon films in the range of from about 2 microns to about 20 microns.
摘要:
A two-step method of etching an organic coating layer, in particular, an organic antireflection coating (ARC) layer, is disclosed. During the main etch step, the organic coating layer is etched using a plasma generated from a first source gas which includes a fluorocarbon and a non-carbon-containing, halogen-comprising gas. Etching is performed using a first substrate bias power. During the overetch step, residual organic coating material remaining after the main etch step is removed by exposing the substrate to a plasma generated from a second source gas which includes a chlorine-containing gas and an oxygen-containing gas, and which does not include a polymer-forming gas. The overetch step is performed using a second substrate bias power which is less than the first substrate bias power. The first source gas and first substrate bias power provide a higher etch rate in dense feature areas than in isolated feature areas during the main etch step, whereas the second source gas and second substrate bias power provide a higher etch rate in isolated feature areas than in dense feature areas during the overetch step, resulting in an overall balancing effect.
摘要:
A two-step etch method for etching a masked layer or layers that include fast and slow etching regions is described. Fast and slow etching regions may arise in a variety of devices, such as microelectrical mechanical system (“MEMS”) applications and mixed signal (i.e. analog and digital) integrated circuits, as well as other integrated circuits and devices. In one embodiment, a first etchant is used to etch through the layer in the fastest etching region, and then a second etchant is used to complete etching through the layer in the slowest etching region.
摘要:
A two etchant etch method for etching a layer that is part of a masked structure is described. The method is useful, for example, in microelectrical mechanical system (MEMS) applications, and in the fabrication of integrated circuits and other electronic devices. The method can be used advantageously to optimize a plasma etch process capable of etching strict profile control trenches with 89°+/−1° sidewalls in silicon layers formed as part of a mask structure where the mask structure induces variations in etch rate. The inventive two etchant etch method etches a layer in a structure with a first etchant etch until a layer in a fastest etching region is etched. The layer is then etched with a second etchant until a layer in a region with a slowest etch rate is etched. A second etchant may also be selected to provide sidewall passivation and selectivity to an underlying layer of the structure.
摘要:
The method of present invention etches a layer of polysilicon formed on a substrate disposed within a substrate processing chamber. The method flows an etchant gas including sulfur hexafluoride, an oxygen source and a nitrogen source into the processing chamber and ignites a plasma from the etchant gas to etch the polysilicon formed over the substrate. In a preferred embodiment, the etchant gas consists essentially of SF6, molecular oxygen (O2) and molecular nitrogen (N2). In a more preferred embodiment the etchant gas includes a volume ratio of molecular oxygen to the sulfur hexafluoride of between 0.5:1 and 1:1 inclusive and a volume ratio of the sulfur hexafluoride to molecular nitrogen of between 1:1 and 4:1 inclusive. In an even more preferred embodiment, the volume ratio of O2 to sulfur hexafluoride is between 0.5:1 and 1:1 inclusive and the volume ratio of sulfur hexafluoride to N2 is between 1.5:1 and 2:1 inclusive.
摘要:
The present disclosure pertains to our discovery that a particular sequence of processing steps will lead to the formation of a rounded top corner on a trench formed in a semiconductor substrate. In general, the method of the invention includes the following steps: (a) providing a film stack comprising the following layers, from the upper surface of the film stack toward the underlying substrate, (i) a first layer of patterned material which is resistant to a wet etch solution used to etch an underlying second layer and which is resistant to dry etch components used to etch the semiconductor substrate, and (ii) a second layer of material which can be preferentially etched using a wet etch solution, wherein the second layer of material is deposited directly on top of the semiconductor substrate; (b) wet etching the second layer by immersing the film stack in a wet etch solution for a period of time sufficient to form an undercut beneath the first layer and to expose the underlying semiconductor substrate; and (c) isotropically dry etching the exposed semiconductor substrate so as to form a trench in the semiconductor substrate. The present invention provides a method for obtaining a rounded top trench corner while at the same time retaining excellent control of the critical dimensions of the trench. The method of the invention, which is useful in both shallow trench and vertical trench applications, provides a rounded top trench corner having a radius within the range of about 150 Å to about 500 Å, most preferably, within the range of about 200 Å to about 350 Å.