摘要:
A two-step method of etching an organic coating layer, in particular, an organic antireflection coating (ARC) layer, is disclosed. During the main etch step, the organic coating layer is etched using a plasma generated from a first source gas which includes a fluorocarbon and a non-carbon-containing, halogen-comprising gas. Etching is performed using a first substrate bias power. During the overetch step, residual organic coating material remaining after the main etch step is removed by exposing the substrate to a plasma generated from a second source gas which includes a chlorine-containing gas and an oxygen-containing gas, and which does not include a polymer-forming gas. The overetch step is performed using a second substrate bias power which is less than the first substrate bias power. The first source gas and first substrate bias power provide a higher etch rate in dense feature areas than in isolated feature areas during the main etch step, whereas the second source gas and second substrate bias power provide a higher etch rate in isolated feature areas than in dense feature areas during the overetch step, resulting in an overall balancing effect.
摘要:
Methods for etching electrodes formed directly on gate dielectrics are provided. In one aspect, an etch process is provided which includes a main etch step, a soft landing step, and an over etch step. In another aspect, a method is described which includes performing a main etch having good etch rate uniformity and good profile uniformity, performing a soft landing step in which a metal/metal barrier interface can be determined, and performing an over etch step to selectively remove the metal barrier without negatively affecting the dielectric. In another aspect, a method is provided which includes a first non-selective etch chemistry for bulk removal of electrode material, a second intermediate selective etch chemistry with end point capability, and then a selective etch chemistry to stop on the gate dielectric.
摘要:
A method of forming a notch silicon-containing gate structure is disclosed. This method is particularly useful in forming a T-shaped silicon-containing gate structure. A silicon-containing gate layer is etched to a first desired depth using a plasma generated from a first source gas. During the etch, etch byproducts deposit on upper sidewalls of the silicon-containing gate layer which are exposed during etching, forming a first passivation layer which protects the upper silicon-containing gate layer sidewalls from etching during subsequent processing steps. A relatively high substrate bias power is used during this first etch step to ensure that the passivation layer adheres properly to the upper silicon-containing gate sidewalls. The remaining portion of the silicon-containing gate layer is etched at a lower bias power using a plasma generated from a second source gas which selectively etches the silicon-containing gate layer relative to the underlying gate dielectric layer, whereby a lower sidewall of the silicon-containing gate layer is formed and an upper surface of the gate dielectric layer is exposed. The etch stack is then exposed to a plasma generated from a third source gas which includes nitrogen, whereby a second, nitrogen-containing passivation layer is formed on the exposed sidewalls of the silicon-containing gate layer. Subsequently, a notch is etched in the lower sidewall of the silicon-containing gate layer. The method of the invention provides control over both the height and the width of the notch, while providing a marked improvement in notch critical dimension uniformity between isolated and dense feature areas of the substrate.
摘要:
A method of etching a silicon-containing material in a substrate comprises placing the substrate in a process chamber and exposing the substrate to an energized gas comprising fluorine-containing gas, chlorine-containing gas and sidewall-passivation gas. The silicon-containing material on the substrate comprises regions having different compositions, and the volumetric flow ratio of the fluorine-containing gas, chlorine-containing gas, and sidewall-passivation gas is selected to etch the compositionally different regions at substantially similar etch rates.
摘要:
Embodiments of the invention include methods for in-situ chamber dry cleaning a plasma processing chamber utilized for gate structure fabrication process in semiconductor devices. In one embodiment, a method for in-situ chamber dry clean includes supplying a first cleaning gas including at least a boron containing gas into a processing chamber in absence of a substrate disposed therein, supplying a second cleaning gas including at least a halogen containing gas into the processing chamber in absence of the substrate, and supplying a third cleaning gas including at least an oxygen containing gas into the processing chamber in absence of the substrate.
摘要:
An apparatus having a multiple gas injection port system for providing a high uniform etching rate across the substrate is provided. In one embodiment, the apparatus includes a nozzle in the semiconductor processing apparatus having a hollow cylindrical body having a first outer diameter defining a hollow cylindrical sleeve and a second outer diameter defining a tip, a longitudinal passage formed longitudinally through the body of the hollow cylindrical sleeve and at least partially extending to the tip, and a lateral passage formed in the tip coupled to the longitudinal passage, the lateral passage extending outward from the longitudinal passage having an opening formed on an outer surface of the tip.
摘要:
We have discovered a method of detecting the approach of an endpoint during the etching of a material within a recess such as a trench or a contact via. The method provides a clear and distinct inflection endpoint signal, even for areas of a substrate containing isolated features. The method includes etching the material in the recess and using thin film interferometric endpoint detection to detect an endpoint of the etch process, where the interferometric incident light beam wavelength is tailored to the material being etched; the spot size of the substrate illuminated by the light beam is sufficient to provide adequate signal intensity from the material being etched; and the refractive index of the material being etched is sufficiently different from the refractive index of other materials contributing to reflected light from the substrate, that the combination of the light beam wavelength, the spot size, and the difference in refractive index provides a clear and distinct endpoint signal.
摘要:
The present disclosure relates to semiconductor processing, and to the plasma etching of organic layers, and in particular antireflective coating layers. We have discovered a particular combination of gases useful in producing chemically reactive plasma species, which provides unexpected control over etched feature critical dimension, etch profile, and uniformity of etch across a substrate surface, despite a difference in the spacing of etched features over the substrate surface. The combination of gases which produces chemically reactive plasma species consists essentially of CxHyFz, a bromine-comprising compound (which is typically HBr), and O2, where x ranges from 1 to 4, y ranges from 0 to 3, and z ranges from 1 to 10. Oxygen atoms may be substituted for hydrogen atoms in the CxHyFz compound to a limited extent Essentially inert gases which do not produce chemically reactive species may be added to the combination of etchant-species producing gases. A combination of CF4/HBr/O2 has been demonstrated to work well. With this combination of plasma source gases, critical Dimension (CD) uniformity control across the surface of the substrate is generally improved by using a volumetric ratio of CxHyFz:HBr ranging from about 2:1 to about 5:1, with a range of about 3:1 to about 4:1 being preferred. An increased plasma density also helps improve CD uniformity control. The volumetric ratio of (CxHyFz+HBr):O2 should range between about 1:1 to 5:1, with a range of about 2:1 to about 3:1 being preferred.
摘要翻译:本公开涉及半导体处理,以及有机层的等离子体蚀刻,特别是抗反射涂层。 我们已经发现了可用于生产化学反应性等离子体物质的特定气体组合,尽管蚀刻特征在衬底上的间隔有差异,但是它们对蚀刻特征临界尺寸,蚀刻轮廓以及衬底表面上的蚀刻均匀性提供了意想不到的控制 表面。 产生化学反应性等离子体物质的气体的组合基本上由CxHyFz,含溴化合物(通常为HBr)和O 2组成,其中x为1至4,y为0至3,z的范围为1 氧原子可以在有限的程度上代替CxHyFz化合物中的氢原子。基本上不产生化学反应性物质的惰性气体可以添加到产生蚀刻剂的气体组合中。 CF4 / HBr / O2的组合已被证明是有效的。 通过这种等离子体源气体的组合,通常通过使用C 2 H 4 F 5 :H 2 O的体积比约2:1至约5:1的体积比来改善基底表面上的临界尺寸(CD)均匀性控制,其范围为约 优选3:1至约4:1。 增加的等离子体密度也有助于改善CD均匀性控制。 (C x H y F z + HBr):O 2的体积比应在约1:1至5:1之间,优选约2:1至约3:1的范围。
摘要:
Embodiments of the invention include methods for in-situ chamber dry cleaning a plasma processing chamber utilized for gate structure fabrication process in semiconductor devices. In one embodiment, a method for in-situ chamber dry clean includes supplying a first cleaning gas including at least a boron containing gas into a processing chamber in absence of a substrate disposed therein, supplying a second cleaning gas including at least a halogen containing gas into the processing chamber in absence of the substrate, and supplying a third cleaning gas including at least an oxygen containing gas into the processing chamber in absence of the substrate.
摘要:
Methods for fabricating a semiconductor device having a lanthanum-family-based oxide layer are described. A gate stack having a lanthanum-family-based oxide layer is provided above a substrate. At least a portion of the lanthanum-family-based oxide layer is modified to form a lanthanum-family-based halide portion. The lanthanum-family-based halide portion is removed with a water vapor treatment.