Abstract:
An integrated circuit structure includes a substrate and at least one pair of complementary transistors on or in the substrate. The pair of complementary transistors comprises a first transistor and a second transistor. The structure also includes a first stress-producing layer on the first transistor and the second transistor, and a second stress-producing layer on the first stress-producing layer over the first transistor and the second transistor. The first stress-producing layer applies tensile strain force on the first transistor and the second transistor. The second stress-producing layer applies compressive strain force on the first stress-producing layer, the first transistor, and the second transistor.
Abstract:
Semiconductor devices and methods of manufacture thereof are disclosed. In a preferred embodiment, a method of manufacturing a semiconductor device includes providing a semiconductor wafer, forming at least one isolation structure within the semiconductor wafer, and forming at least one feature over the semiconductor wafer. A top portion of the at least one isolation structure is removed, and a liner is formed over the semiconductor wafer, the at least one feature, and the at least one isolation structure. A fill material is formed over the liner. The fill material and the liner are removed from over at least a portion of a top surface of the semiconductor wafer.
Abstract:
Methods of forming features and structures thereof are disclosed. In one embodiment, a method of forming a feature includes forming a first material over a workpiece, forming a first pattern for a lower portion of the feature in the first material, and filling the first pattern with a sacrificial material. A second material is formed over the first material and the sacrificial material, and a second pattern for an upper portion of the feature is formed in the second material. The sacrificial material is removed. The first pattern and the second pattern are filled with a third material.
Abstract:
Embodiments of the present disclosure provide stress optimization during manufacturing of dual embedded epitaxially grown (EPI) semiconductor structures using just two masks, such as nFET and pFET open for embedded epitaxial using SiC and SiGe, and separated halo implantation masks for both horizontal and vertical PC
Abstract:
Methods of manufacturing semiconductor devices and structures thereof are disclosed. In one embodiment, a method of manufacturing a semiconductor device includes forming recesses in a first region and a second region of a workpiece. The first region of the workpiece is masked, and the recesses in the second region of the workpiece are filled with a first semiconductive material. The second region of the workpiece is masked, and the recesses in the first region of the workpiece are filled with a second semiconductive material.
Abstract:
Methods of fabricating semiconductor devices and structures thereof are disclosed. In one embodiment, a method of manufacturing a semiconductor device includes forming a gate material stack over a workpiece having a first region and a second region. A composition or a thickness of at least one of a plurality of material layers of the gate material stack is altered in at least the second region. The gate material stack is patterned, forming a first transistor in the first region and forming a second transistor in the second region. Altering the composition or the thickness of the at least one of the plurality of material layers of the gate material stack in at least the second region results in a first transistor having a first threshold voltage and a second transistor having a second threshold voltage, the second threshold voltage having a different magnitude than the first threshold voltage.
Abstract:
Semiconductor devices and methods of manufacturing thereof are disclosed. A preferred embodiment includes a semiconductor device comprising a workpiece, the workpiece including a first region and a second region proximate the first region. A first material is disposed in the first region, and at least one region of a second material is disposed within the first material in the first region, the second material comprising a different material than the first material. The at least one region of the second material increases a first stress of the first region.
Abstract:
Methods of forming features and structures thereof are disclosed. In one embodiment, a method of forming a feature includes forming a first material over a workpiece, forming a first pattern for a lower portion of the feature in the first material, and filling the first pattern with a sacrificial material. A second material is formed over the first material and the sacrificial material, and a second pattern for an upper portion of the feature is formed in the second material. The sacrificial material is removed. The first pattern and the second pattern are filled with a third material.