Abstract:
A voltage regulator is controlled to improve supply voltage rejection by cancelling an alternating component of a supply voltage signal that is capacitively coupled to a high-impedance node within the voltage regulator. This cancellation is done by capacitively coupling an inverted version of the alternating component to the high-impedance node to thereby substantially cancel the alternating component present on the high-impedance node. The high-impedance node may be a high-impedance voltage reference node of the voltage regulator.
Abstract:
A significant reduction of the amplitude of the transient response is obtained by keeping a low dropout regulator circuit in a closed loop condition. This is achieved by manipulation of the reference voltage level when an open loop condition arises due to a falling input voltage. In this case, the reference voltage level is tracked with the input voltage level, keeping the output voltage regulated. As a consequence, the power pass element of the regulator is not forced into the linear region (in the case of a MOSFET) or deep saturation (in the case of a bipolar transistor).
Abstract:
A method includes: writing first data in a first partition of a first memory module and second data in a first partition of a second memory module, and selectively operating the first and second memory modules in a first operating mode and a second operating mode. The first operating mode includes writing parity bits for the first data in a second partition of the second memory module and parity bits for the second data in a second partition of the first memory module. The second operating mode includes writing further data instead of parity bits in the second partition of one or both the first memory module and the second memory module.
Abstract:
A system and method for wireless charging a wireless earbud. The wireless earbud having a body that includes a passive magnetic shield and a coil. The coil is wound around a portion of the body comprising the passive magnetic shielding. The wireless earbud receiving wireless energy in response to the placement of the body within an electromagnetic field, which results in the charging of a battery of the wireless earbud.
Abstract:
A method implemented by a wireless charging receiver (RX) includes detecting, by the wireless charging RX, that a voltage potential of an output of a rectifier of the wireless charging RX has met a boost mode threshold; placing, by the wireless charging RX, the rectifier into a boost mode; and detecting, by the wireless charging RX, that the voltage potential of the output of the rectifier of the wireless charging RX has met a specified threshold, and based thereon, negotiating, by the wireless charging RX with a wireless charging transmitter (TX), to initiate a power transfer.
Abstract:
The disclosure describes methods and apparatus for quickly prototyping of a solution developed using one or more sensing devices (e.g., sensors), functional blocks, algorithm libraries, and customized logic. The methods produce firmware executable by a processor (e.g., a microcontroller) on an embedded device such as a development board, expansion board, or the like. By performing these methods on the apparatus described, a user is able to create a function prototype without having deep knowledge of the particular sensing device or any particular programming language. Prototypes developed as described herein enable the user to rapidly test ideas and develop sensing device proofs-of-concept. The solutions produced by the methods and apparatus improve the functioning of the sensor being prototyped and the operation of the embedded device where the sensor is integrated.
Abstract:
A device includes a master device, a set of slave devices and a bus. The master device is configured to transmit first messages carrying a set of operation data message portions indicative of operations for implementation by slave devices of the set of slave devices, and second messages addressed to slave devices in the set of slave devices. The second messages convey identifiers identifying respective ones of the slave devices to which the second messages are addressed requesting respective reactions towards the master device within respective expected reaction intervals. The slave devices are configured to receive the first messages transmitted from the master device, read respective operation data message portions in the set of operation data message portions, implement respective operations as a function of the respective operation data message portions read, and receive the second messages transmitted from the master device.
Abstract:
A MOSFET has a current conduction path between source and drain terminals. A gate terminal of the MOSFET receives an input signal to facilitate current conduction in the current conduction path as a result of a gate-to-source voltage reaching a threshold voltage. A body terminal of the MOSFET is coupled to body voltage control circuitry that is sensitive to the voltage at the gate terminal of the MOSFET. The body voltage control circuitry responds to a reduction in the voltage at the gate terminal of the MOSFET by increasing the body voltage of the MOSFET at the body terminal of the MOSFET. As a result, there is reduction in the threshold voltage. The circuit configuration is applicable to amplifier circuits, comparator circuits and current mirror circuits.
Abstract:
The disclosure describes methods and apparatus for quickly prototyping of a solution developed using one or more sensing devices (e.g., sensors), functional blocks, algorithm libraries, and customized logic. The methods produce firmware executable by a processor (e.g., a microcontroller) on an embedded device such as a development board, expansion board, or the like. By performing these methods on the apparatus described, a user is able to create a function prototype without having deep knowledge of the particular sensing device or any particular programming language. Prototypes developed as described herein enable the user to rapidly test ideas and develop sensing device proofs-of-concept. The solutions produced by the methods and apparatus improve the functioning of the sensor being prototyped and the operation of the embedded device where the sensor is integrated.
Abstract:
Disclosed is a method for testing touch screen displays during manufacture. A touch screen controller (TSC) is packaged, and the analog channels of the TSC are characterized, with resulting data being stored for later use. The TSC is programmed, and the touch screen display and TSC are packaged together. The touch screen display is tested using firmware in the TSC, enabling calculation of the inherent capacitances between force and sense lines of the touch screen display when connected to the TSC during operation. The testing involves, for each force and sense line pair, measuring an output signal generated by a receive channel of the TSC coupled to the sense line of that pair. Based upon the data gathered during characterization, and the signals measured during testing, the capacity of the touch screen display is then calculated.