Abstract:
An ink-jet print head having a dual function thermal controller is disclosed. In a thin-film print head apparatus, a buried resistive layer is located generally circumscribing the other active elements of the print head, viz., the drop generators and the firing logic. During printing operations, the buried resistive layer is used to sense print head temperature. When the print head temperature falls beneath a predetermined minimum limit, the buried resistive layer is activated to act as a heater for the entire print head. Alternatively, the heater can be cycled at predetermined intervals.
Abstract:
A printing system that includes a transparency film detector having a light source for illuminating a sheet of input media and a detector for detecting whether a portion of the light provided by the light source propagated by internal reflection within the volume of the illuminated input media sheet is detected.
Abstract:
Apparatuses and methods for detecting error in loading print media in a printing device are disclosed. An apparatus embodiment includes a width adjuster position sensor that determines a position of a print medium width adjuster, a width sensor that measures a width of a print medium, and a computing device that compares the width adjuster position with the print medium width, and verifies that the width adjuster is properly positioned for the print medium width. Another embodiment includes a length adjuster position sensor that determines a position of a print medium length adjuster, a length sensor that measures a length of the print medium, and a computing device that compares the length adjuster position with the print medium length, and verifies that the length adjuster is properly positioned for the print medium length. A method embodiment includes determining a position of a width adjuster, measuring a width of a print medium, comparing the width adjuster position with the print medium width, and prompting a user to properly position the width adjuster when the width adjuster is improperly positioned for the print medium width. Another method embodiment includes determining a position of a length adjuster, measuring a length of the print medium, comparing the length adjuster position with the print medium length, and prompting a user to properly position the length adjuster when the length adjuster is improperly positioned for the print medium length. Further characteristics and features of the apparatuses and methods are disclosed herein, as are exemplary alternative embodiments.
Abstract:
An ink-jet printer for ink-jet printing onto a print media. The printer has an ink-jet cartridge for ejecting ink onto a print medium during printing operations. A rotating drum platen holds a print medium on an outer surface thereof, the drum platen having an interior volume defined therein and an end wall extending transversely to the outer surface. A carriage holds the cartridge in a closely arranged position relative to the external surface of the drum. A drum drive apparatus rotates the drum to move the print medium in relation to the printhead of the cartridge. The printer further has a printer controller mounted in a fixed position relative to a printer chassis, and an electronic circuit disposed in the interior volume of the drum platen. A data communication link passes data between the printer controller and the electronic circuit. The data link includes a capacitor comprising a first capacitor ring structure mounted to the end wall concentric to an axis of rotation of the platen, and a second capacitor ring structure mounted in fixed relation to the drum platen adjacent the end surface and in close proximity to the first capacitor ring structure.
Abstract:
A monitoring system monitors a pressure wave developed in the surrounding ambient environment during inkjet droplet formation. The monitoring system uses either acoustic, ultrasonic, or other pressure wave monitoring mechanisms, such as a laser vibrometer, an ultrasonic transducer, or an accelerometer sensor, for instance, a microphone to detect droplet formation. One sensor is incorporated in the printhead itself, while others may be located externally. The monitoring system generates information used to determine current levels of printhead performance, to which the printer may respond by adjusting print modes, servicing the printhead, adjusting droplet formation, or by providing an early warning before an inkjet cartridge is completely empty. During printhead manufacturing, an array of such sensors may be used in quality assurance to determine printhead performance. An inkjet printing mechanism is also equipped for using this monitoring system and a monitoring method is also provided.
Abstract:
A position encoder system is provided, such system including a code wheel, a pair of sensors, a counter, and a processor capable of identifying the correlation between separately identified markings of the code wheel. The identified correlation is indicative of code wheel accuracy, and thus is used to correct error in any angular position determined using the code wheel. A method of identifying position of the code wheel thus includes: (1) providing a disc including a first track having incremental markings of a first resolution and a second track having incremental markings of a second resolution; (2) providing a first sensor to identify markings along the first track; (3) providing a second sensor to identify markings along the second track; (4) quantifying markings of the second track during a predetermined movement of the disc; (5) identifying eccentricity by determining a difference between the quantified number of markings and a predetermined desired quantity of markings; and (6) adjusting the identified relative angular position based on the corresponding identified eccentricity.
Abstract:
In DC-DC switching converters of the single-ended primary inductance (SEPIC) type, using a high frequency transformer to isolate the load from the AC power line is difficult because its leakage inductance causes serious circuit problems. In the invention, an additional coupling capacitor provides the required DC isolation without affecting circuit performance. The total coupling capacitance may be chosen to limit the power line frequency leakage current to a safe value.