Abstract:
An optical input/output (I/O) bus system for connecting a plurality of external devices with a central processing unit (CPU) or memory in a specific system using an optical signal is provided. The optical I/O bus system includes a serializer and deserializer (SerDes) connected with the CPU or memory, and configured to divide a serial electrical signal into parallel electrical signals or combine parallel electrical signals into a serial electrical signal, a photoelectric converter prepared between the SerDes and the external devices, and configured to convert the serial/parallel electrical signals into an optical signal or an optical signal into an electrical signal, a plurality of optical transmission means disposed in parallel to transfer the optical signal converted by the photoelectric converter, an optical switch prepared between the photoelectric converter and the optical transmission means, and configured to switch to one of the optical transmission means to transfer the optical signal converted by the photoelectric converter to the optical transmission means according to an address of the optical signal, and a plurality of optical slots connected to the respective optical transmission means to connect the external devices so that the optical signal is input/output. In the optical I/O bus system, a high-capacity signal can be transferred without distortion, interference, and bottleneck using optical connection technology.
Abstract:
A conducting polymer, the conducting polymer composition further including an ionomer, and an organic optoelectronic device including the conducting polymer or the composition are provided. The conducting polymer according to the embodiments of the present invention is a self-doped conducting polymer in which conducting polymer chains are grafted in a polyacid. The conducting polymer composition to the present invention is manufactured by blending the self-doped conducting polymer with an ionomer having a physical cross-linking property thereto, and thus they are homogeneously dissolved in water or organic solvents. The conducting polymer and the composition have a good film-forming property and can be easily blended with other organic polymers, and conductivity and a work function thereof is easily controlled according to the content of the ionomer. Also, optoelectronic devices including the conducting polymer composition have high efficiency and a long lifetime.
Abstract:
An electroluminescent device comprises a substrate, a first electrode, a second electrode, and an organic layer disposed between the first electrode and the second electrode, and including at least a light-emitting layer. A metal nano pattern which enables emission of polarized light is provided on one surface of at least one of the first electrode and the second electrode, wherein a grating period of the metal nano pattern satisfies the relation of Formula 1 below. A method of preparing the electroluminescent device comprises providing a substrate, first and second electrodes, and an organic layer including a light-emitting layer, with a metal nano pattern being provided on at least one of the first and second electrodes. Formula 1 is described in more detail in the description of the invention. The electroluminescent device can achieve emission of polarized light, without reforming materials used in forming the organic layer. D
Abstract translation:电致发光器件包括衬底,第一电极,第二电极和设置在第一电极和第二电极之间的有机层,并且至少包括发光层。 在第一电极和第二电极中的至少一个的一个表面上设置能够发射偏振光的金属纳米图案,其中金属纳米图案的光栅周期满足下面的式1的关系。 制备电致发光器件的方法包括提供衬底,第一和第二电极以及包括发光层的有机层,金属纳米图案设置在第一和第二电极中的至少一个上。 在本发明的描述中更详细地描述了公式1。 电致发光器件可以实现偏振光的发射,而不需要用于形成有机层的重整材料。 D <λn o + n i sin ... 我公式1
Abstract:
In a method of forming a conductive layer, a conductive layer formed using the method, an organic electroluminescent device including the conductive layer, and a method of manufacturing the organic electroluminescent device, the method of forming the conductive layer comprises: pre-treating a substrate in order to improve adhesive force; coating a mixture solution which contains a sulfonate-based catalyst and a solvent on the substrate, and then drying the coated product; and performing vapor-phase polymerization by contacting the substrate on which the catalyst is coated with monomers which make up a conductive polymer in a vapor phase. The conductive layer obtained using the method of forming a conductive layer has high conductivity, high transmittance with respect to light having a wavelength of 300 nm to 700 nm, uniform thickness, and thermal-chemical stability.
Abstract:
A conductive polymer, a conductive polymer composition, a conductive polymer organic film, and an organic photoelectric device including the same, the conductive polymer including repeating units represented by the following Chemical Formula 1, repeating units represented by the following Chemical Formula 2, and repeating units represented by the following Chemical Formula 3:
Abstract:
Herein is a three-layered catalyst system in which layers including predetermined precious metal components are sequentially layered on a substrate, and thus the conversion ratio of HC and CO is increased, thereby improving purification efficiency. The three-layered catalyst system includes a substrate, a lower layer containing a precious metal component of only platinum, an intermediate layer containing a precious metal component of only palladium, and an upper layer containing a precious metal component of only platinum, all of which are sequentially layered.
Abstract:
An organic light emitting device and a method of manufacturing the same, the organic light emitting device includes a first electrode, a second electrode, and an organic layer that has at least a multi-coated emissive layer and which is interposed between the first and second electrodes. The multi-coated emissive layer is a single layer composed of a neutral emissive material and an no−ne parameter of the emissive layer is greater than an no−ne parameter of a single-coated layer. The organic light emitting device has a longer lifetime and high efficiency.
Abstract:
Disclosed herein is a conductive copolymer. The conductive copolymer can prevent water-absorbance, lower the concentration of polyacid contained in a molecule and exhibit superior film characteristics and excellent storage stability via a reduction in aggregation between molecules, as well as impart improved efficiency and lifetime to optoelectronic devices. The conductive copolymer includes a conductive polymer doped with a polyacid copolymer represented by Formula 1 below: Further disclosed are a conductive copolymer composition, a conductive copolymer composition film and an organic optoelectronic device, each including the conductive copolymer.
Abstract:
A method of fabricating a thin film transistor, in which source and drain electrodes are formed through a solution process, even all stages which include formation of electrodes on a substrate, formation of an insulator layer, and formation of an organic semiconductor layer are conducted through the solution process. In the method, the fabrication is simplified and a fabrication cost is reduced. It is possible to apply the organic thin film transistor to integrated circuits requiring high speed switching because of high charge mobility.