Abstract:
A touch detecting function display apparatus includes a plurality of common driving electrodes, a display element performing display, a touch detection element detecting an external approaching object, and a scanning driving unit performing first scanning driving for sequentially applying a display driving signal to the plurality of common driving electrodes in a time division manner and second scanning driving for sequentially applying a touch detection driving signal to the plurality of common driving electrodes in a time division manner, wherein the scanning driving unit performs the second scanning driving at a scanning speed higher than that of the first scanning driving, and applies the display driving signal to an overlapping common driving electrode when the common driving electrode selected as a target of the first scanning driving overlaps with the common driving electrode selected as a target of the second scanning driving.
Abstract:
A display device includes: a first detection section configured to detect the light intensity around a display area; a second detection section configured to detect the dark current when light is shielded; and a comparator configured to compare the difference output between the first and second detection section against a given reference value. The display device controls the light intensity supplied to the display area according to the comparison result of the comparator.
Abstract:
A power circuit includes: a frequency dividing circuit dividing the frequency of a first signal to which a level shift processing has been applied; a boosting circuit boosting the voltage according to an output signal from the frequency dividing circuit or a second signal having a lower frequency than that of the first signal as a boosting pulse; a level shifter; and a switching unit. The switching unit obtains a boosted voltage output from the boosting circuit after a boosting operation, performed by the boosting circuit having received the second signal, inputs the boosted voltage output to the level shifter such that the level shifter can execute level conversion of the first signal, and stops the boosting operation performed according to the second signal, thereafter inputting the level-shifted first signal to the boosting circuit via the frequency dividing circuit to obtain a final boosted voltage.
Abstract:
A capacitive touch panel capable of reducing a disturbance noise and reducing touch detection time with a simple structure is obtained. The capacitive touch panel includes: a plurality of drive electrodes each to which a drive signal for touch detection is applied; a plurality of touch detection electrodes arranged to intersect the plurality of drive electrodes, and each outputting a detection signal synchronized with the drive signal; a first sampling circuit (A/D conversion circuits 72 and 73) extracting a first series of sampling signal including a signal component with first level and a noise component, from the detection signal; a second sampling circuit (A/D conversion circuits 75 and 76) extracting a second series of sampling signal including a signal component with second level different from the first level and the noise component, from the detection signal; a filter circuit (digital LPFs 81 and 82) performing a high range cut process on the first series of sampling signal and the second series of sampling signal; and a computation circuit (a subtraction circuit 90) determining a signal for touch detection based on an output of the filter circuit.
Abstract:
A display device includes: a display functional layer that can change display for each pixel in accordance with an application voltage; a plurality of driving electrodes separately disposed in one direction; a plurality of pixel signal lines to which pixel signals used for applying the application voltage to the display functional layer in accordance with an electric potential difference from the display reference electric potential are applied; a plurality of detection electrodes that are separately disposed in a direction other than the one direction, are coupled with the driving electrodes as electrostatic capacitance, generate detection electric potentials in response to the detection driving signal, and change the detection electric potential in accordance with approach of a detection target object; and a pixel signal control unit that controls the pixel signals so as to include pixel signals having different polarities during the display period.
Abstract:
A touch sensor that may detect an object away from the sensor is provided. The touch sensor includes one or more drive electrodes; one or more detection electrodes forming capacitance in cooperation with the respective drive electrodes; a detection circuit applying drive signals to the respective drive electrodes to detect the object based on detection signals obtained from the respective detection electrodes in response to the respective drive signals; and a controller controlling to change a range of electric flux lines generated between the drive electrodes and the detection electrodes.
Abstract:
A display includes: display pixel electrodes; common electrodes; a display layer; a display control circuit performing image display control based on an image signal; touch detection electrodes each arranged to form a capacitance between each of the touch detection electrodes and each of the common electrodes; and a touch detection circuit detecting an external proximity object based on a detection signal obtained from the touch detection electrodes with use of a common drive voltage for display applied to the common electrodes by the display control circuit as a touch sensor drive signal. The touch detection circuit includes: an A/D (analog-digital) converter section performing sampling of a detection signal obtained from each of the touch detection electrodes at three or more different sampling frequencies to produce three or more sampling detection signals, and a detection section performing a detection operation based on the three or more sampling detection signals.
Abstract:
A touch panel, a display panel, and a display unit achieving prevention of erroneous detection caused by external noise, are provided. The touch panel includes: a plurality of detection scan electrodes extending in a first direction; and a plurality of detection electrodes facing the plurality of detection scan electrodes and extending in a second direction which intersects the first direction. A ratio of fringe capacitance to total capacitance between one or more selected detection scan electrodes and a first detection electrode is different from a ratio of fringe capacitance to total capacitance between the one or more selected detection scan electrodes and a second detection electrode. The one or more selected detection scan electrodes are selected, in a desired unit, from the plurality of detection scan electrodes, to be supplied with a selection pulse, and each of the first and the second detection electrodes is selected from the plurality of detection electrodes.
Abstract:
A touch sensor includes a touch drive electrode, a touch detection electrode provided opposed to or side by side with the touch drive electrode and forming an electrostatic capacitance between the touch detection electrode and the touch drive electrode, and a touch detection circuit detecting a contact or proximity position of an object on the basis of a detection signal obtained from the touch detection electrode by applying a touch sensor drive signal to the touch drive electrode. The touch drive electrode is split into plural stripe-like electrode patterns. Applying the touch sensor drive signal to part of the electrode patterns forms a drive line at that time. The touch detection circuit performs a detection on the basis of a first detection signal obtained from a first drive line formed in a first period, and a second detection signal obtained from a second drive line formed in a second period.
Abstract:
Disclosed herein is a display apparatus including: a display panel having a plurality of picture elements configured to execute display by driving a liquid crystal layer; a backlight configured to illuminate a display surface of the display panel from a backside; a photodetector arranged on the plurality of picture elements and configured to receive a light entered from the side of the display surface of the display panel; and a detection block configured to execute image recognition in the proximity of the display surface from a difference between a photodetection amount in the photodetector in a state where an illuminating light from the backlight is radiated from the display surface and a photodetection amount in the photodetector in a state where the illuminating light is blocked before the display surface.