Abstract:
A driving method with reducing image sticking effect is disclosed. The driving method includes applying a voltage on the data lines for trapping impurities crossing the data lines and lowering the degree of the image sticking effect, and applying different asymmetric waveforms to different data lines for trapping impurities crossing the data lines and lowering the degree of the image sticking effect.
Abstract:
A driving method with reducing image sticking effect is disclosed. The driving method includes applying a voltage on the data lines for trapping impurities crossing the data lines and lowering the degree of the image sticking effect, and applying different asymmetric waveforms to different data lines for trapping impurities crossing the data lines and lowering the degree of the image sticking effect.
Abstract:
A liquid crystal display includes a gate driver, a data driver and a pixel matrix. The gate driver is for outputting a plurality of gate signals successively. The data driver is for providing a plurality of data signals. The pixel matrix includes a number of pixels. Each pixel includes a first sub-pixel, a second sub-pixel and a voltage coupling device. The voltage coupling device is coupled between the first sub-pixel and the second sub-pixel such that pixel voltages of the first sub-pixel and the second sub-pixel are different and have relevant variation.
Abstract:
A liquid crystal display includes a gate driver, a data driver and a pixel matrix. The gate driver is for outputting a plurality of gate signals successively. The data driver is for providing a plurality of data signals. The pixel matrix includes a number of pixels. Each pixel includes a first sub-pixel, a second sub-pixel and a voltage coupling device. The voltage coupling device is coupled between the first sub-pixel and the second sub-pixel such that pixel voltages of the first sub-pixel and the second sub-pixel are different and have relevant variation.
Abstract:
A pixel structure disposed on a substrate is provided. The pixel structure includes a first and a second capacitor electrode, a dielectric layer, a passivation layer, a pixel electrode, and an active device. The first capacitor electrode is disposed on the substrate and has a first notch. The dielectric layer covers the first capacitor electrode, and the second capacitor electrode is disposed on the dielectric layer above the first capacitor electrode. The passivation layer is disposed on the dielectric layer to cover the second capacitor electrode, and the passivation layer has a contact opening above the first notch for exposing a part of the second capacitor electrode. The pixel electrode is disposed on the passivation layer and is electrically connected to the second capacitor electrode through the contact opening. The active device is electrically connected to the pixel electrode. Additionally, a method for repairing the pixel structure is also provided.
Abstract:
A liquid crystal display includes a source driver, a gate driver, a plurality of pixel units, a plurality of detecting circuits, and a decision unit. Each pixel unit includes a switch transistor and a liquid crystal capacitor. When turned on by a scan signal generated by the gate driver, the switch transistor conducts a data signal voltage generated by the source driver to the liquid crystal capacitor, to adjust alignment of liquid crystal molecules. Each detecting circuit is electrically connected to one pixel unit, and includes a first transistor, a second transistor, a third transistor and a sensor unit. The first transistor conducts a constant voltage to the sensor unit when turned on, and generates a dynamic voltage when turned off. Based on the dynamic voltage, the second transistor generates a dynamic current. The third transistor conducts the dynamic current to the decision unit when turned on. The decision unit determines the position of one detecting circuit by comparing the dynamic currents output by the plurality of detecting circuits.
Abstract:
A three-dimensional display for the viewer to watch through glasses is provided, wherein the glasses have two lenses and the polarized directions thereof are perpendicular to each other. The three-dimensional display includes a display panel and a liquid crystal phase modulator. The display panel, suitable for displaying an image, has a plurality of pixels arranged in array and a polarizer having a transmission axis, wherein the polarizer disposed between the pixels and the glasses. The liquid crystal phase modulator suitable for providing phase retardation includes a liquid crystal layer and an alignment layer adjacent to the display panel. An included angle between an alignment direction of the alignment layer and the transmission axis is substantially equal to n×45 degrees, wherein an absolute value of n is an integer. The liquid crystal phase modulator adjusts a phase of the image and then outputs an image with three-dimensional information.
Abstract:
The disclosed is a liquid crystal display panel having alignment protrusions with an appropriate optical density (OD) of about 0.3/μm to 3/μm, and preferably of about 0.8/μm to 1.3/μm. The invention solves problems such as light leakage in dark conditions caused by transparent alignment protrusions and mismatch caused by black alignment protrusions overlapping the alignment marks.
Abstract:
A pixel structure disposed on a substrate is provided. The pixel structure includes a first and a second capacitor electrode, a dielectric layer, a passivation layer, a pixel electrode, and an active device. The first capacitor electrode is disposed on the substrate and has a first notch. The dielectric layer covers the first capacitor electrode, and the second capacitor electrode is disposed on the dielectric layer above the first capacitor electrode. The passivation layer is disposed on the dielectric layer to cover the second capacitor electrode, and the passivation layer has a contact opening above the first notch for exposing a part of the second capacitor electrode. The pixel electrode is disposed on the passivation layer and is electrically connected to the second capacitor electrode through the contact opening. The active device is electrically connected to the pixel electrode. Additionally, a method for repairing the pixel structure is also provided.
Abstract:
A method for warming-up an LCD system which includes a pixel array having a plurality of pixel units. Each pixel unit includes a pixel electrode, and a TFT (thin film transistor) provide with a source and a gate such that a gate signal inputted into the gate can switch on and switch off the TFT so as to permit transfer of a data signal from the source to the pixel electrode. The method includes the steps: floating the source of the TFT; and applying the gate signal onto the gate which is coupled to the pixel electrode in such a manner that the pixel electrode possesses a voltage level which is substantially equal to that of the gate signal.