摘要:
The present invention is to carry out stable doping and to prevent the drastic pressure change in a treatment chamber by reducing degasification of resist during adding impurities. In the present invention, the stability of the impurity ion injection can be ensured by reducing degasification of resist by reducing the area (resist area proportion, that is, the ratio of the area of resist to the whole area of a substrate) of resist pattern which is used depending on the conditions such as acceleration voltage or current density of a doping process.
摘要:
An object of the invention is to manage variation of electrical characteristics of an element in a semiconductor device due to a vapor deposition process by measuring electrical characteristics of a TEG. A substrate 100 of an active matrix EL panel includes a vapor deposition region 101 having a film formed by a vapor deposition method. In the vapor deposition region 101, a pixel region 102 is provided. A TEG 109 is provided in the vapor deposition region 101 having a film formed in a vapor deposition step and outside of the pixel region 102. A measurement terminal portion 110 for measuring the TEG 109 is provided outside of a sealing region 103.
摘要:
An object is to provide a display device, in a part of which a monitor light emitting element is provided and in which an anode and a cathode of the monitor light emitting element are prevented from short-circuiting in an early stage and over time by using a circuit which corrects a voltage or a current to be supplied to a light emitting element in consideration of electrical property fluctuation of the monitor light emitting element, and a method for inspecting the display device. A monitor light emitting element is provided, which is electrically connected to a monitor line for supplying a current is provided, and a circuit is provided, which electrically disconnects the monitor light emitting element when an anode and a cathode of the monitor light emitting element are short-circuited in an early stage or over time. Further, a circuit for checking circuit operation before or after a step of providing the monitor light emitting element is provided.
摘要:
A light emitting device is provided, in which a change of luminance of an OLED is suppressed and a desired color display can be stably performed even if an organic light emitting layer is somewhat deteriorated or an environmental temperature is varied. Separately from a pixel portion for displaying an image, a pixel portion for measuring a driving current of the OLED is provided in the light emitting device. The driving current is measured in the pixel portion for measuring the driving current of the OLED, and a value of the voltage supplied to the above two pixel portions from a variable power supply is corrected such that the measured driving current has a reference value. With the above-described structure, a reduction of the luminance accompanied with the deterioration of the organic light emitting layer can be suppressed. As a result, a clear image can be displayed.
摘要:
In order to achieve lower power consumption, a technique of performing display (partial display) by utilizing only a part of a display area is used. For example, a display area is divided, a plurality of driver circuits for driving the divided display areas independently are provided, and only a region where a fixed pattern is displayed is driven in a power saving mode, thereby partial display is performed; however, display cannot be performed at an arbitrary position. Alternatively, partial display can be performed by inputting a video signal to a pixel in an arbitrary display area; however, a structure of a driver circuit is complicated. The object of the invention is to provide a display device which can perform partial display at an arbitrary position and reduce power consumption. In partial display, operation of a signal line driver circuit is set so as to be stopped and a non-display signal is set so as to be outputted from the signal line driver circuit when a pixel in a non-display area is selected.
摘要:
According to a driving method of applying a reverse bias voltage, capacitance occurs due to a stacked structure of a conductor, an insulator and a conductor, or due to a structure of a TFT. This capacitance prevents normal operation. The invention provides a pixel configuration including at least a driving transistor for driving a light emitting element and a switching transistor for controlling the driving transistor, wherein the switching transistor is turned on in the case of applying a forward bias voltage after applying a reverse bias voltage. As a result, it is prevented that the potential changes due to unwanted capacitive coupling.
摘要:
A display device and a driving method thereof are provided, which reduces an instantaneous current generated with a charge and discharge of source signal lines and further reduces a load to a power supply line. According to the invention, source signal lines are divided into the first to the n-th groups so as to be charged or discharged according to the first to the n-th latch pulses which are inputted at different timing. Since the number of the source signal lines which start to be charged or discharged at the same time is reduced, an instantaneous current generated with the charge and discharge can be reduced, and a load to the power supply line can be reduced as well.
摘要:
In order to achieve lower power consumption, a technique of performing display (partial display) by utilizing only a part of a display area is used. For example, a display area is divided, a plurality of driver circuits for driving the divided display areas independently are provided, and only a region where a fixed pattern is displayed is driven in a power saving mode, thereby partial display is performed; however, display cannot be performed at an arbitrary position. Alternatively, partial display can be performed by inputting a video signal to a pixel in an arbitrary display area; however, a structure of a driver circuit is complicated. The object of the invention is to provide a display device which can perform partial display at an arbitrary position and reduce power consumption. In partial display, operation of a signal line driver circuit is set so as to be stopped and a non-display signal is set so as to be outputted from the signal line driver circuit when a pixel in a non-display area is selected.
摘要:
A problem in that a light emitting element slightly emits light is solved by an off current of a thin film transistor connected in series to the light emitting element, thereby a display device which can perform a clear display by increasing contrast, and a driving method thereof are provided. When the thin film transistor connected in series to the light emitting element is turned off, a charge held in the capacitance of the light emitting element itself is discharged. Even when an off current is generated at the thin film transistor connected in series to the light emitting element, this off current charges this capacitance until the capacitance of the light emitting element itself holds a predetermined voltage again. Accordingly, the off current of the thin film transistor does not contribute to light emission. In this manner, a slight light emission of the light emitting element can be reduced.
摘要:
Degradations in light emitting elements occur with the passage of time. The invention provides a method of driving a light-emitting device provided with a plurality of pixels, which includes a light-emitting means with a first and a second electrodes, a drive means for supplying the light-emitting means with a current in response to an analog video signal, and a setting means for setting a sustaining period and an off time period within a frame period. The method of driving a light-emitting device is characterized by including the steps of: supplying the light-emitting means with the current in response to the analog video signal during the sustaining period; and turning the drive means off thereby to make the light-emitting means nonluminous or making the first and the second electrodes identical in potential thereby to make the light-emitting means nonluminous during the off time period.