摘要:
The data defining an object to be holographically reconstructed is first arranged into a number of virtual section layers, each layer defining a two-dimensional object data sets, such that a video hologram data set can be calculated from some or all of these two-dimensional object data sets. The first step is to transform each two-dimensional object data set to a two-dimensional wave field distribution. This wave field distribution is calculated for a virtual observer window in a reference layer at a finite distance from the video hologram layer. Next, the calculated two-dimensional wave field distributions for the virtual observer window, for all two-dimensional object data sets of section layers, are added to define an aggregated observer window data set. Then, the aggregated observer window data set is transformed from the reference layer to the video hologram layer, to generate the video hologram data set for the computer-generated video hologram.
摘要:
A method and a device for encoding and reconstructing computer-generated video holograms using a conventional LC display: it provides holographic reconstruction of three-dimensional scenes using electronically controllable pixel in a holographic array (3) with a conventional resolution, and is reasonably free from flickering and cross-talk. Reconstruction is in real time, and for both eyes at the same time, over a large viewing zone. The method takes advantage of an optical focusing means (2) in order to image vertically coherent light emitted by a line light source (1) into viewing windows (8R, 8L) after modulation by the pixel array (3). The holographic reconstruction (11) of the scene is rendered visible from viewing windows (8R, 8L) for both eyes of an observer by way of diffraction at the pixels. According to the invention, the controllable pixels are disposed in vertical pixel columns (15, 16), which encode separate holograms of the same scene for each of the viewer's eyes (R, L), where said holograms are one-dimensional in the vertical direction and horizontally interleaved. An image separation means (7) with separating elements arranged parallel to the pixel columns reveals the respective pixel columns (15, 15′ or 16, 16′) for one eye and covers them for the other eye.
摘要:
A method of computing a hologram by determining the wavefronts at the approximate observer eye position that would be generated by a real version of an object to be reconstructed. In normal computer generated holograms, one determines the wavefronts needed to reconstruct an object; this is not done directly in the present invention. Instead, one determines the wavefronts at an observer window that would be generated by a real object located at the same position of the reconstructed object. One can then back-transforms these wavefronts to the hologram to determine how the hologram needs to be encoded to generate these wavefronts. A suitably encoded hologram can then generate a reconstruction of the three-dimensional scene that can be observed by placing one's eyes at the plane of the observer window and looking through the observer window.
摘要:
A device for holographic reconstruction of three-dimensional scenes includes optical focusing means which directs sufficiently coherent light from light means to the eyes of at least one observer via a spatial light modulator that is encoded with holographic information. The device has a plurality of illumination units for illuminating the surface of the spatial light modulator; each unit comprises a focusing element, and a light means that emits sufficiently coherent light such that each of these illumination units illuminates one separate illuminated region of the surface, whereby the focusing element and the light means are arranged such that the light emitted by the light means coincides close to or at the observer eyes.
摘要:
A holographic reconstruction system is disclosed with spatial light modulation means, modulating interferable light waves from light sources with at least one video hologram, comprising optical focusing means, focusing the modulated light waves with the reconstructed object light points for at least one eye position for the eyes of observers and controllable electro-optical deflector means, which direct the focused modulated light waves with the reconstructed light points to at least one eye position in order to reduce the aberrations. The reconstruction system has the optical focusing means in a field of focusing elements, wherein each focusing element is provided with at least one interferable light source. The electro-optical deflector means lie in the light path of the interferable light waves after the optical focusing mean and have at least one field of deflector elements, which has at least one separately controllable electro-optical deflector element for each focusing element.
摘要:
A method is disclosed for rendering and generating color video holograms for a holographic reproduction device having at least one light modulation means, wherein a scene divided into object points is encoded as a whole hologram and which can be seen from as a reconstruction a visibility region, which is located within a periodicity interval of the reconstruction of the video hologram. The visibility region defines a subhologram together with each object point of the scene to be reconstructed and the whole hologram is formed from a superposition of subholograms, wherein a 3D rendering graphic pipeline structures a scene represented by image data with depth information into object points and determines and provides at least color and depth information for the object points.
摘要:
A mobile telephony system comprising a calling party mobile telephone with an imaging system and a display. The imaging system is operable to capture an image of the calling party. The calling party mobile telephone sends an image of the calling party to a called party mobile telephone over a wireless link, and the called party mobile telephone locally generates a holographic reconstruction of the calling party using a holographic display that is encoded with a hologram. An advantage is that a mobile telephone call may be held in which one party views a holographic reconstruction of the other party.
摘要:
A holographic projection system with a display screen and an optical wave tracking element for controlling the direction of propagation of a modulated wave uses a position controller and an eye finder. An extremely wide tracking range is realized in the projection system for simultaneous viewing of the reconstruction by multiple observers, which are situated beside one another. The reconstruction of the scene is reconstructed for each eye position of an observer such that the entire scene is visible in the visibility region in a large tracking range with minimal errors. The projection system reconstructs the scene with the help of modulated partial waves. Projection element(s) direct these partial waves with separately holographically reconstructed segments of the scene at the desired eye position through a structure of screen segments which are at least horizontally staggered on the display screen.
摘要:
A method of computing a hologram for reconstructing an object using a display device. The display device enables a holographic reconstruction of the object. The display device includes a light source and an optical system to illuminate a hologram-bearing medium being encodable with the hologram. The method includes the steps of: (a) computing the hologram by determining the wavefronts at an approximate observer eye position that would be generated by a real version of the object to be reconstructed; and (b) encoding the computed hologram in the hologram-bearing medium.
摘要:
The invention relates to an interface and circuit arrangement, in particular for transmitting digital image data to at least one holographic encoding unit (HEU), which generates complex hologram values from image data containing depth information and/or encodes the pixel values for controlling at least one light modulator element of a holographic reproduction device. The invention is characterized in that the interface transmits the depth map of the image data and the color map of said image data separately via transmission means (L1, L2) and communication protocols, said depth map comprising the depth information and the color map the color information of scanned images in an image sequence.