Abstract:
Various embodiments are disclosed relating to power control techniques for wireless transmitters. In an example embodiment, an apparatus is provided that may include a digital-to-analog converter (DAC) adapted to convert a digital amplitude signal to an analog amplitude signal during a first transmission mode and adapted to convert a digital power level signal to an analog power level signal during a second transmission mode.
Abstract:
A system includes baseband circuitry and a transmitter. The electrical behavior of the transmitter may cause distortion effects in the transmit output of the transmitter during transmissions based on input signals from the baseband circuitry. The baseband circuitry may reference a calibration evaluation function for multiple transmit variables to pre-distort the input signal to compensate for the distortion effect. Pre-distortion calibration logic may generate the evaluation function using a one-dimensional calibration technique. The evaluation function may facilitate the baseband accessing calibration data without necessarily relying on a look-up table. In some cases, a one-dimensional calibration for multiple transmit variables may use fewer calibration points than a similarly accurate multi-dimensional calibration.
Abstract:
A core module for a portable computing device includes wireless power receiver circuitry, battery power circuitry, power supply circuitry, a processor, and an RF link interface. The wireless power receiver module, when operable, receives a wireless power transmit signal and converts it into a supply voltage. The battery power circuitry, when operable, outputs a battery voltage. The power supply circuitry, when operable, converts the supply voltage or the battery voltage into one or more power supply voltages. The processor is operable to select one of the battery voltage, the supply voltage, and one of the one or more power supply voltages to produce a selected voltage. The RF link interface outputs the selected voltage on to an RF link of the portable computing device for providing power to one or more multi mode RF units within the portable computing device.
Abstract:
A circuit for a common electrical balance duplexer (EBD) of a multi-path transceiver may include an EBD circuit. The EBD circuit may be coupled to output nodes of two or more transmit (TX) paths, one or more antennas, and input nodes of two or more receive (RX) paths. The EBD circuit may be configured to isolate the TX paths from the RX paths, and to provide low-loss signal paths between the output nodes of the transmit (TX) paths and one or more antennas. One or more balancing networks may be coupled to the EBD circuit to provide one or more impedances, each matching a corresponding impedance associated with one of the antennas. The output nodes of the transmit (TX) paths may include output nodes of a first and a second power amplifier (PA). The first and the second PA may share a matching transformer that is merged with the EBD circuit.
Abstract:
A radio receiver supporting cancellation of thermal and phase noise in a down-converted RF signal. An inbound RF signal and blocking signal are provided directly to a passive mixer for down-conversion into a first baseband signal having data, thermal noise, and reciprocal mixing (RM) noise components. The inbound signals are also provided to a transconductance circuit, the output of which is provided to a second passive mixer for conversion into a current signal having data and blocking signal components, and a RM image. The blocking signal component and the RM image are mixed with a second LO signal, derived from the blocking signal, to produce a RM noise cancellation signal. The data component of the current signal is converted into a second baseband signal having data and thermal noise components. The first baseband signal, second baseband signal and RM noise cancellation signal are then combined through harmonic recombination.
Abstract:
According to one embodiment, a compact low-power receiver comprises first and second analog circuits connected by a digitally controlled interface circuit. The first analog circuit has a first direct-current (DC) offset and a first common mode voltage at an output, and the second analog circuit has a second DC offset and a second common mode voltage at an input. The digitally controlled interface circuit connects the output to the input, and is configured to match the first and second DC offsets and to match the first and second common mode voltages. In one embodiment, the first analog circuit is a variable gain control transimpedance amplifier (TIA) implemented using a current mode buffer, the second analog circuit is a second-order adjustable low-pass filter, whereby a three-pole adjustable low-pass filter in the compact low-power receiver is effectively produced.
Abstract:
A radio frequency (RF) noise-cancelling receiver includes first transconductance cells configured to produce respective weighted current signals proportional to an input voltage signal. The RF receiver includes frequency conversion cells coupled to the first transconductance cells and configured to mix the weighted current signals with a plurality of non-overlapping local oscillator (LO) signals to produce downconverted current signals. The RF receiver includes transimpedance amplifiers coupled to the frequency conversion cells and configured to produce output voltage signals proportional to the downconverted current signals. The transimpedance amplifiers include second transconductance cells. Each of the first and second transconductance cells has an effective transconductance of a first magnitude for frequency components of the input voltage signal arising from a first harmonic and an effective transconductance of a second magnitude less than the first magnitude for frequency components of the input voltage signal arising from harmonics at integer multiples of the first harmonic.
Abstract:
A portable computing device includes a radio frequency (RF) wired link, a core module, and a plurality of multi-mode RF units. When one or more of the multi-mode RF units are supporting a high-speed data communication, the core module is operable to detect a blocker that is adversely affecting the high-speed data communication. The core module is further operable to determine whether a radiation pattern alternative for the high-speed data communication will reduce the adverse affects on the high-speed data communication. When the radiation pattern alternative for the high-speed data communication will reduce the adverse affects on the high-speed data communication, the core module is further operable to enable the radiation pattern alternative. The one or more multi-mode RF units are operable to adjust at least one of transmission and reception of the high-speed data communication in accordance with the radiation pattern alternative.
Abstract:
A method for reciprocal-mixing noise cancellation may include receiving, from a first mixer, a first signal comprising a wanted signal at a first frequency and a modulated signal at a second frequency. The modulated signal may be a product of a reciprocal-mixing of an unwanted signal with a phase noise. One or more portions of the modulated signal may overlap the wanted signal, adding a reciprocal-mixing noise to the wanted signal. A second signal may be generated by mixing, at a second mixer, the first signal with a third signal, which is at a third frequency related to a blocker offset frequency. A gain may be applied to the second signal to generate an amplified second signal that may be subtracted from the first signal to generate a fourth signal. The fourth signal may be filtered to generate the wanted signal at the first frequency without the reciprocal-mixing noise.
Abstract:
A method for reciprocal-mixing noise cancellation may include receiving a baseband signal down-converted to baseband using a local oscillator (LO). The baseband signal may comprise a wanted signal and a reciprocal mixing noise, which at least partially overlaps the wanted signal and is due to mixing of a blocker signal with a phase noise of the LO. Blocker recovery may be performed on the baseband signal and a blocker estimate signal may be generated from the baseband signal. The phase noise of the LO may be measured and used in generating a phase noise measurement signal. The blocker estimate signal and the phase noise measurement signal may be processed to generate a reconstructed noise signal that may comprise the overlapping reciprocal mixing noise. The reconstructed noise signal may be subtracted from the baseband signal to provide the wanted signal free from to the reciprocal mixing noise.