摘要:
A method and an arrangement in a radio network node for reconfiguring mappings from Carrier Indicator Field-values to component carriers are provided. Each CIF-value is mapped to a respective component carrier comprising a respective shared data channel. Each respective shared data channel corresponds to at least one downlink control channel carrying said each CIF-value. The radio network node reconfigures mappings from CIF-values to component carriers, while at least one mapping of CIF-value to component carrier is maintained. The component carrier of said at least one mapping from CIF-value to component carrier comprises said at least one downlink control channel and a shared data channel corresponding to said at least one downlink control channel. The radio network node sends at least one of the reconfigured mappings from CIF-values to component carriers to the user equipment.
摘要:
The invention relates to a method in a first communication device of receiving control information over a radio channel from a second communication device. The first communication device receives a subframe over the radio channel, and determines whether the subframe is a downlink subframe with downlink assignment intended for the first communication device by reading data in the subframe. That being the case, the first communication device decodes data within the subframe, and determines whether any data packet being sent from the second communication device before the subframe has been missed by analysing an indicator associated to the subframe in the data. The indicator provides knowledge about previous downlink subframes with downlink assignment intended for the first communication device.
摘要:
A method and an arrangement in a radio network node for reconfiguring mappings from Carrier Indicator Field-values to component carriers are provided. Each CIF-value is mapped to a respective component carrier comprising a respective shared data channel. Each respective shared data channel corresponds to at least one downlink control channel carrying said each CIF-value. The radio network node reconfigures mappings from CIF-values to component carriers, while at least one mapping of CIF-value to component carrier is maintained. The component carrier of said at least one mapping from CIF-value to component carrier comprises said at least one downlink control channel and a shared data channel corresponding to said at least one downlink control channel. The radio network node sends at least one of the reconfigured mappings from CIF-values to component carriers to the user equipment.
摘要:
A method in a radio network node for dynamic carrier mode switching is provided. The radio network node is comprised in a radio communications system. The radio network node is configured to operate in a legacy mode and is further configured to operate in a non legacy mode. At least one carrier is operated so that it switches (602) from non legacy mode to legacy mode. When operating the carrier in the legacy mode, the radio network node signals (603) with a user equipment. The user equipment operates in legacy mode, but can not operate in non legacy mode. The radio network node then operates the at least one carrier so that it switches (604) from legacy mode back to non legacy mode.
摘要:
The present disclosure relates to a technique for transmitting modulation symbols on multiple frequency resources. A method aspect of this technique includes applying a Discrete Fourier Transform (DFT) coding per set of modulation symbols of two or more sets of modulation symbols, wherein a first set of modulation symbols from the two or more sets of modulation symbols is transmitted on a set of frequency resources handled by the same power amplifier. Then, Orthogonal Frequency Division Multiplexing (OFDM) modulation is applied to the sets of DFT coded modulation symbols to output a first set of OFDM symbols for transmission on the set of frequency resources, and output another set of OFDM symbols for transmission on at least one additional frequency resource distinct from the set of frequency resources. Power amplification is then applied per set of frequency resources at the power amplifier.
摘要:
According to the present invention, a receiving node of a telecommunications network (20) (e.g. a radio base station (20) in uplink, or a mobile terminal (24) in downlink) transmits a single acknowledgement message to a transmitting node (e.g. a mobile terminal (24) in uplink, or a radio base station (22) in downlink) in respect of signals received over a plurality of frequency-aggregated carriers (component carriers) (10) between the transmitting and receiving nodes. If all signals are decoded correctly in the receiving node, a positive acknowledgement message (ACK) is sent to the transmitting node; if not all signals are decoded correctly, a negative acknowledgement message (NACK) is sent, or no acknowledgement message is sent. In this way, a single acknowledgement message can be sent for signals received over multiple carriers. The acknowledgement message can have the same format as legacy standards (for example, as specified in Release 8 of the 3GPP specifications), providing compatibility with existing equipment. The number of messages is also reduced compared with the straightforward approach of transmitting individual acknowledgement messages per component carrier.
摘要:
A User Equipment, UE, supporting communication in a multicarrier radio communication system and a method therein for receiving information from a Radio Base Station, RBS, are provided. The method comprises determining 310 a bandwidth by which the UE will receive information, the bandwidth comprising a plurality of sub-carriers. The method also comprises adjusting 320 a bandwidth of the UE to correspond to the determined bandwidth by which the UE will receive information; and fine tuning 330 a local oscillator of the UE such that a centre frequency of a local oscillator does not coincide with a predetermined subcarrier transmitted from the RBS.
摘要:
The invention is a method and apparatus for signaling uplink control information in a mobile communication network using carrier aggregation. The signaling mechanism allows the transmission, on a single uplink component carrier, of control information associated with a downlink transmission on multiple aggregated downlink component carriers. Semi-statically reserved resources for the transmission of control information on the uplink component carrier may be dynamically shared by user terminals that are assigned multiple downlink component carriers for downlink transmissions. Implicit or explicit resource indication can be used in combination with dynamic resource indication.
摘要:
Methods and arrangements for resource allocation in a telecommunication system in which aggregation of component carriers is applied. The size of the resource allocation field is determined based on the transmission bandwidth of a selection of component carriers. The selection of component carriers comprises the component carrier on which the resource allocation message is monitored and the component carriers which are cross-scheduled from said component carrier. The resource allocation message comprising the resource allocation field with the determined size is transmitted to the user equipment over a particular component carrier of the selection of component carriers. Furthermore, with only one size of the resource allocation field a smaller number of code word sizes needs to be monitored by the UE. This leads to a smaller number of blind decodings performed in the UE. The present invention enables a more tailored approach when determining the size of the resource allocation field to avoid too high overhead but also a too coarse resource allocation.
摘要:
According to the present invention, a receiving node of a telecommunications network (20) (e.g. a radio base station (22) in uplink, or a mobile terminal (24) in downlink) transmits a single acknowledgement message to a transmitting node (e.g. a mobile terminal (24) in uplink, or a radio base station (22) in downlink) in respect of signals received over a plurality of frequency-aggregated carriers (component carriers) (10) between the transmitting and receiving nodes. If all signals are decoded correctly in the receiving node, a positive acknowledgement message (ACK) is sent to the transmitting node; if not all signals are decoded correctly, a negative acknowledgement message (NACK) is sent, or no acknowledgement message is sent. In this way, a single acknowledgement message can be sent for signals received over multiple carriers. The acknowledgement message can have the same format as legacy standards (for example, as specified in Release 8 of the 3GPP specifications), providing compatibility with existing equipment. The number of messages is also reduced compared with the straightforward approach of transmitting individual acknowledgement messages per component carrier.