摘要:
A method for manufacturing a CMOS image sensor is provided. The method includes forming a gate electrode on a semiconductor layer having defined regions of a photodiode region and a logic region, such that a gate oxide film is interposed between the semiconductor layer and the gate electrode; forming sidewall insulating films at both sides of the gate electrode, followed by forming a salicide-preventing film over an overall surface of the gate electrode and insulating films; removing the salicide-preventing film formed in the logic region; and removing a portion of the sidewall insulating films exposed by removing the salicide-preventing film, thereby exposing an upper side surface of the gate electrode.
摘要:
An image sensor and fabricating method thereof are provided. A gate electrode is formed on a semiconductor substrate with a photodiode on one side and a low-concentration drain on the other side. A silicide blocking pattern covers the photodiode, the gate electrode, and part of the low-concentration drain, such that an aperture exposes a portion of the low-concentration drain. A high-concentration drain is formed in the substrate under the aperture.
摘要:
A CMOS image sensor and a method for fabricating the same is disclosed, to decrease a darkcurrent generated in the boundary between a diffusion area of a photodiode and a device isolation layer, which includes a first conductive type semiconductor substrate having an active area and a device isolation area, the active area including a photodiode and a transistor; a device isolation layer formed in the device isolation area of the semiconductor substrate; a second conductive type diffusion area formed in the photodiode of the semiconductor substrate at a predetermined interval from the device isolation layer; a gate insulating layer and a gate electrode formed in the transistor of the semiconductor substrate; and a first conductive type first diffusion area formed in the semiconductor substrate of the boundary between the second conductive type diffusion area and the device isolation layer.
摘要:
In order to reduce the SAS resistance at the cell region with low process cost, a method for fabricating a semiconductor device according to the present invention includes forming a protection layer on a semiconductor substrate on which a cell region and a peripheral region are defined, forming a first trench and a second trench at the respective cell and the peripheral regions by selectively etching the protection layer and the semiconductor substrate, and deepening the second trench by further etching the peripheral region while the cell region being blocked and the peripheral region being exposed.
摘要:
A CMOS image sensor and a method for manufacturing the same, capable of preventing an interface between an active region and a field region in the CMOS image sensor from being damaged by ion implantation. The method comprises the steps of depositing a sacrificial oxide layer and a hard mask layer on a semiconductor substrate; etching the sacrificial oxide layer and the hard mask layer to form a mask pattern; etching the substrate to a predetermined depth to form a trench; depositing an isolating material in the trench and planarizing it until substantially coplanar with the hard mask layer; removing the hard mask layer to leave a protrusion in the isolating layer; depositing an insulating layer on the substrate and isolating layer; and etching the insulating layer and the sacrificial oxide layer sufficiently to form a spacer mask and expose the surface of the substrate.
摘要:
The present invention relates to a method of forming a contact of a semiconductor device, and more particularly, to a method of forming a contact of a semiconductor device that can improve the process yield of the device and reliability by simplifying the process of forming the contact hole of the top conductive layer without removing the etching barrier layer of the portion on which the contact hole of the top conductive layer is to be formed when a storage electrode contact is formed, where the contact hole of the top conductive layer is formed on the top of the bottom conductive layer, which refers to a process of forming the self-alignment contact.