Abstract:
Methods for forming a via structure are provided. The method includes depositing a first-layer conductive line over a semiconductor substrate, forming a dielectric layer over the first-layer conductive line, forming a via opening in the dielectric layer and exposing the first-layer conductive line in the via opening, forming a recess portion in the first-layer conductive line, and filling the via opening to form a via extending through the dielectric layer to the first-layer conductive line. The via has a substantially tapered profile and substantially extends into the recess in the first-layer conductive line.
Abstract:
A semiconductor structure includes a first metal-containing layer, a dielectric capping layer, a second metal-containing layer, and a conductive pad. The first metal-containing layer includes a set of metal structures, a dielectric filler disposed to occupy a portion of the first metal-containing layer, and an air-gap region defined by at least the set of metal structures and the dielectric filler and abutting at least a portion of the set of metal structures. The second metal-containing layer includes at least a via plug electrically connected to a portion of the set of metal structures. The conductive pad and the via plug do not overlap the air-gap region.
Abstract:
Partial air gap formation for providing interconnect isolation in integrated circuits is described. One embodiment is an integrated circuit (“IC”) structure includes a substrate having two adjacent interconnect features formed thereon; caps formed over and aligned with each of the interconnect features; sidewalls formed on opposing sides of each of the interconnect features and a gap formed between the interconnect features; and a dielectric material layer disposed over the substrate to cover the caps and the gap.
Abstract:
A semiconductor structure includes a first metal-containing layer, a dielectric capping layer, a second metal-containing layer, and a conductive pad. The first metal-containing layer includes a set of metal structures, a dielectric filler disposed to occupy a portion of the first metal-containing layer, and an air-gap region defined by at least the set of metal structures and the dielectric filler and abutting at least a portion of the set of metal structures. The second metal-containing layer includes at least a via plug electrically connected to a portion of the set of metal structures. The conductive pad and the via plug do not overlap the air-gap region.
Abstract:
A method of forming an integrated circuit structure includes forming a dielectric layer; forming an opening in the dielectric layer; performing a first deposition step to form a seed layer in a first chamber; and performing a first etch step to remove a portion of the seed layer. The method may further include performing a second deposition step to increase the thickness of the seed layer. At least one of the first etch step and the second deposition step is performed in a second chamber different from the first chamber.
Abstract:
A method for fabricating an integrated circuit includes providing a substrate, forming a low-k dielectric layer over the substrate, etching the low-k dielectric layer to form an opening in the low-k dielectric layer wherein an underlying metal is exposed through the opening, performing a remote plasma treatment to the substrate wherein a plasma used for the remote plasma treatment is generated from a plasma generator separated from a chamber in which the substrate is located, forming a diffusion barrier layer in the opening, and filling the opening with a conductive material. The method preferably includes an in-situ plasma treatment in a same chamber as the step of etching the low-k dielectric layer.
Abstract:
An integrated circuit structure having improved resistivity and a method for forming the same are provided. The integrated circuit structure includes a dielectric layer, an opening in the dielectric layer, and a damascene structure in the opening. The damascene structure includes a metallic barrier layer in the opening and in physical contact with the dielectric layer, a conductive material filling the remaining part of the opening, and an interlayer between and adjoining the metallic barrier layer and the conductive material. The interlayer is preferably a metal compound layer.
Abstract:
A method of forming a seed layer of an interconnect structure includes forming a dielectric layer; forming an opening in the dielectric layer; performing a first deposition step to form the seed layer; and in-situ performing a first etch step to remove a portion of the seed layer. The method may further includes additional deposition and etch steps for forming the seed layer.
Abstract:
An integrated circuit structure having improved resistivity and a method for forming the same are provided. The integrated circuit structure includes a dielectric layer, an opening in the dielectric layer, and a damascene structure in the opening. The damascene structure includes a metallic barrier layer in the opening and in physical contact with the dielectric layer, a conductive material filling the remaining part of the opening, and an interlayer between and adjoining the metallic barrier layer and the conductive material. The interlayer is preferably a metal compound layer.
Abstract:
An integrated circuit structure having improved resistivity and a method for forming the same are provided. The integrated circuit structure includes a dielectric layer, an opening in the dielectric layer, an oxide-based barrier layer directly on sidewalls of the opening, and conductive materials filling the remaining portion of the opening.