摘要:
In a memory system, a programming waveform reduces program noise by using sets of multiple adjacent sub-pulses which have a saw-tooth shape. In a set, an initial sub-pulse steps up from an initial level such as 0 V to a peak level, then steps down to an intermediate level, which is above the initial level. One or more subsequent sub-pulses of the set can step up from an intermediate level to a peak level, and then step back down to an intermediate level. A last sub-pulse of the set can step up from an intermediate level to a peak level, and then step back down to the initial level. A verify operation is performed after the set of sub-pulses. The number of sub-pulses per set can decrease in successive sets until a solitary pulse is applied toward the end of a programming operation.
摘要:
Techniques are disclosed herein for programming memory arrays to achieve high program/erase cycle endurance. In some aspects, only selected word lines (WL) are programmed with other WLs remaining unprogrammed. As an example, only the even word lines are programmed with the odd WLs left unprogrammed. After all of the even word lines are programmed and the data block is to be programmed with new data, the block is erased. Later, only the odd word lines are programmed. The data may be transferred to a block that stores multiple bit per memory cell prior to the erase. In one aspect, the data is programmed in a checkerboard pattern with some memory cells programmed and others left unprogrammed. Later, after erasing the data, the previously unprogrammed part of the checkerboard pattern is programmed with remaining cells unprogrammed.
摘要:
Program disturb is reduced in a non-volatile storage system during a programming operation by determining a susceptibility of a set of storage elements to program disturb and taking a corresponding precautionary measure, if needed, to reduce the likelihood of program disturb occurring. During programming of a lower page of data, a natural threshold voltage distribution of the set of storage elements is determined by tracking storage elements which are programmed to a particular state, and determining how many program pulses are need for a number N1 and a number N2>N1 of the storage elements to reach the particular state. Temperature and word line position can also be used to determine the susceptibility to program disturb. A precautionary measure can involve using a higher pass voltage, or abandoning programming of an upper page of data or an entire block. In some cases, programming continues with no precautionary measure.
摘要:
A non-volatile storage system which reduces program disturb. Multiple boosting modes are implemented while programming non-volatile storage. For example, self-boosting, local self-boosting, erased area self-boosting and revised erased area self-boosting may be used. One or more switching criteria are used to determine when to switch to a different boosting mode. The boosting mode may be used to prevent program disturb in unselected NAND strings while storage elements are being programmed in selected NAND strings. By switching boosting modes, an optimal boosting mode can be used as conditions change. The boosting mode can be switched based on various criteria such as program pulse number, program pulse amplitude, program pass number, the position of a selected word line, whether coarse or fine programming is used, whether a storage element reaches a program condition and/or a number of program cycles of the non-volatile storage device.
摘要:
Non-volatile storage with reduced program disturb is provided by boosting unselected NAND strings in an array so that a source side channel, on a source side of a selected word line, is boosted before a drain side channel, on a drain side of the selected word line. In one approach, a first boost mode is used when the selected word line is a lower or intermediate word line. In the first boost mode, boosting of the source and drain side channels is initiated concurrently. A second boost mode is used when the selected word line is a higher word line. In the second boost mode, boosting of the source side channel occurs early relative to the boosting of the drain side channel. Either boost mode include an isolation voltage which tends to isolate the source and drain side channels from one another.
摘要:
A non-volatile storage system which reduces program disturb. Multiple boosting modes are implemented while programming non-volatile storage. For example, self-boosting, local self-boosting, erased area self-boosting and revised erased area self-boosting may be used. One or more switching criteria are used to determine when to switch to a different boosting mode. The boosting mode may be used to prevent program disturb in unselected NAND strings while storage elements are being programmed in selected NAND strings. By switching boosting modes, an optimal boosting mode can be used as conditions change. The boosting mode can be switched based on various criteria such as program pulse number, program pulse amplitude, program pass number, the position of a selected word line, whether coarse or fine programming is used, whether a storage element reaches a program condition and/or a number of program cycles of the non-volatile storage device.
摘要:
Non-volatile storage in which program disturb is reduced by preventing source side boosting in selected NAND strings. A self-boosting mode which includes an isolation word line is used. A channel area of an inhibited NAND string is boosted on a source side of the isolation word line before the channel is boosted on a drain side of the isolation word line. Further, storage elements near the isolation word line are kept in a conducting state during the source side boosting so that the source side channel is connected to the drain side channel. In this way, in selected NAND strings, source side boosting can not occur and thus program disturb due to source side boosting can be prevented. After the source side boosting, the source side channel is isolated from the drain side channel, and drain side boosting is performed.
摘要:
Program disturb is reduced during programming of non-volatile storage by providing a boosting scheme in which isolation voltage are applied to two word lines to create a source side channel region on a source side of one isolation word line, an intermediate channel region between the isolation word lines and a drain side channel region on a drain side of the other isolation word line. Further, during a programming operation, the source and drain side channel regions are boosted early while the intermediate channel region is boosted later, when a program pulse is applied. This approach prevents charge leakage from the intermediate channel region to the source side, avoiding disturb of already programmed storage elements, while also allowing electrons to flow from the intermediate channel region to the drain side channel region, which makes the boosting of the intermediate channel region easier.
摘要:
Errors can occur when reading the threshold voltage of a programmed non-volatile storage element due to at least two mechanisms: (1) capacitive coupling between neighboring floating gates and (2) changing conductivity of the channel area after programming (referred to as back pattern effect). To account for coupling between neighboring floating gates, the read process for a particular memory cell will provide compensation to an adjacent memory cell in order to reduce the coupling effect that the adjacent memory cell has on the particular memory cell. To account for the back pattern effect, a first voltage is used during a verify operation for unselected word lines that have been subjected to a programming operation and a second voltage is used for unselected word lines that have not been subjected to a programming operation. The combination of these two techniques provides for more accurate storage and retrieval of data.
摘要:
Errors can occur when reading the threshold voltage of a programmed non-volatile storage element due to at least two mechanisms: (1) capacitive coupling between neighboring floating gates and (2) changing conductivity of the channel area after programming (referred to as back pattern effect). To account for coupling between neighboring floating gates, the read process for a particular memory cell will provide compensation to an adjacent memory cell in order to reduce the coupling effect that the adjacent memory cell has on the particular memory cell. To account for the back pattern effect, a first voltage is used during a verify operation for unselected word lines that have been subjected to a programming operation and a second voltage is used for unselected word lines that have not been subjected to a programming operation. The combination of these two techniques provides for more accurate storage and retrieval of data.