Abstract:
Systems, methods, and related computer program products for controlling one or more HVAC systems using a distributed arrangement of wirelessly connected sensing microsystems are described. A plurality of wirelessly communicating sensing microsystems is provided, each sensing microsystem including a temperature sensor and a processor, at least one of the sensing microsystems being coupled to an HVAC unit for control thereof. The plurality of sensing microsystems is configured to jointly carry out at least one shared computational task associated with control of the HVAC unit. Each sensing microsystem includes a power management circuit configured to determine an amount of electrical power available for dedication to the at least one shared computational task. The at least one shared computational task is apportioned among respective ones of the plurality of sensing microsystems according to the amount of electrical power determined to be available for dedication thereto at each respective sensing microsystem.
Abstract:
A thermostat for controlling an HVAC system is described, the thermostat having a user interface that is visually pleasing, approachable, and easy to use while also providing intuitive navigation within a menuing system. In a first mode of operation, an electronic display of the thermostat displays a population of tick marks arranged in an arcuate arrangement including a plurality of background tick marks, a setpoint tick mark representing a setpoint temperature, and an ambient temperature tick mark representing an ambient temperature, the setpoint temperature being dynamically changeable according to a tracked rotational input motion of a ring-shaped user interface component of the thermostat. In a second mode, the a plurality of user-selectable menu options is displayed in an arcuate arrangement along a menu option range area, and respective ones of the user-selectable menu options are selectively highlighted according to the tracked rotational input motion of the ring-shaped user interface component.
Abstract:
A thermostat for controlling an HVAC system is described, the thermostat having a user interface that is visually pleasing, approachable, and easy to use while also providing ready access to, and intuitive navigation within, a menuing system capable of receiving a variety of different types of user settings and/or control parameters. For some embodiments, the thermostat comprises a housing, a ring-shaped user-interface component configured to track a rotational input motion of a user, a processing system configured to identify a setpoint temperature value based on the tracked rotational input motion, and an electronic display coupled to the processing system. An interactive thermostat menuing system is accessible to the user by an inward pressing of the ring-shaped user interface component. User navigation within the interactive thermostat menuing system is achievable by virtue of respective rotational input motions and inward pressings of the ring-shaped user interface component.
Abstract:
Content signaturing is provided by a display receiver device comprising one or more source inputs, where each source input is configured to receive a content signal from a corresponding content source. The display receiver device further comprises a content identification module to send sample information derived from each received content signal to a signature processor and to receive from the signature processor content information for each corresponding content source, the content information for a particular content source indicating a content item embodied by the content signal received from that particular content source. The display receiver device further comprises an association module to associate the content item corresponding to the particular content source with one or more associated content items not corresponding to the particular content source.
Abstract:
Detailed herein is a technology which, among other things, allows multimedia content associated with a particular geographic area to be viewed and accessed through an appropriate geographic map. In one approach to this technology, multimedia content is received. This content has an associated geographic tag. A geographic map is displayed, and can be used to gain access to the multimedia content.
Abstract:
A search query is received in a television environment and a search is requested using the search query. Results of the search are received and at least a portion of the received results are displayed. Filtering instructions are received and the received results are filtered to generate filtered results. At least a portion of the filtered results are displayed.
Abstract:
Overlaying visual interface information atop a video signal without obscuring desired features of the video signal. The video signal may contain one or more pre-selected features, such as text. Two or more display sections equally divide the video signal, and any pre-selected features in the video signal are identified as residing in particular display sections. Depending on the nature of the features, the selected visual interface information is placed atop the video signal in a display section not containing any pre-selected features so as not to cover or obscure the features or is placed over specified features that do not significantly contribute to the video signal, such as blank or static screen regions. A hierarchy of preferred display sections for placing the visual interface information may be created to optimize the placement thereof. The methods for overlaying visual interface information find particular application with interactive television systems.
Abstract:
An adjustment is made to the size of an original graphic data object in a substantially rectangular original screen to obtain a target graphic data object on a substantially rectangular target screen having a different aspect ratio than that of the original screen. The size of the original graphic data object is proportionally increased to obtain the target graphic data object on the target screen. The size of the target graphic data object on the target screen is non-proportionally increased by the addition of a stretch distance thereto where a line projecting from a resizing point on and perpendicular to an edge of the original screen intersects the original graphic data object.
Abstract:
An implementation, described herein, provides a highly discoverable mechanism for the user to quickly look-ahead in the EPG grid while still using the familiar and intuitive scroll-forward look-ahead user interaction. This abstract itself is not intended to limit the scope of this patent. The scope of the present invention is pointed out in the appending claims.