摘要:
A method for making a primary cell comprising a lithium anode and an iodine containing cathode. The cell is first subjected to a preliminary conditioning at a predetermined time/temperature to effect a reduction in the impedance of the cell followed by cell discharge of at least 2 mAh per cm.sup.2 of the lithium anode surface prior to use or extended storage of the cell. The resulting primary cell has reduced variation in cell voltage and resistance and slower and more consistent self-discharge characteristics.
摘要翻译:一种制造包含锂阳极和含碘阴极的初级电池的方法。 首先在预定的时间/温度下对电池进行预调节,以在电池的使用或延长存储之前实现电池的阻抗的降低,随后进行至少2mAh / cm 2的锂阳极表面的电池放电 。 所得到的初级电池具有降低的电池电压和电阻的变化以及较慢和更一致的自放电特性。
摘要:
Implantable medical devices, implantable medical device systems that include such implantable medical devices, and implantable medical device batteries, as well as methods of making. Such devices can include a battery of relatively small volume but of relatively high power (reported as therapeutic power) and relatively high capacity (reported as capacity density).
摘要:
The present teachings include an electrochemical cell including an anode, a cathode, an electrolyte, a separator disposed between the cathode and anode, and a housing containing the anode, cathode, electrolyte, and separator. The separator can include a first sheet consisting essentially of a single layer material and a second sheet distinct from the first sheet. The second sheet can include an inner microporous layer laminated between two more outer layers. In some cells, the inner layer can have a transition temperature between a porous configuration and a substantially non-porous configuration that is between about 80 degrees C. and 150 degrees C., and in which the two more outer layers maintain their structural integrity to at least about 10 degrees C. greater than the first layer transition temperature.
摘要:
Power source longevity monitor for an implantable medical device. An energy counter counts the amount of energy used by the implantable medical device. An energy converter converts the energy used into an estimate of remaining power source longevity and generating an energy longevity estimate. A voltage monitor monitors the voltage of the power source. A voltage converter converts the voltage monitored by the voltage monitor into an estimate of remaining longevity of the power source and generating a voltage longevity estimate. A calculator is operatively coupled to the energy converter and to the voltage converter and predicts the power source longevity using the energy longevity estimate early in the useful life of the power source and using the voltage longevity estimate later in the useful life of the power source.
摘要:
A power control circuit for an implantable medical device is presented. The power control circuit includes a first high rate cell, a second high rate cell, at least one resistive load, and at least one control circuit. The at least one resistive load is connected between the first and the second high rate cells. The at least one control circuit is coupled to the first and the second high rate cells.
摘要:
A resistance-stabilizing additive to an electrolyte for a battery cell in an implantable medical device is presented. At least one resistance-stabilizing additive is selected from a group comprising an electron withdrawing group, an aromatic diacid salt, an inorganic salt, an aliphatic organic acid, an aromatic diacid, and an aromatic monoacid.
摘要:
Power source longevity monitor for an implantable medical device. An energy counter counts the amount of energy used by the implantable medical device. An energy converter converts the energy used into an estimate of remaining power source longevity and generating an energy longevity estimate. A voltage monitor monitors the voltage of the power source. A voltage converter converts the voltage monitored by the voltage monitor into an estimate of remaining longevity of the power source and generating a voltage longevity estimate. A calculator is operatively coupled to the energy converter and to the voltage converter and predicts the power source longevity using the energy longevity estimate early in the useful life of the power source and using the voltage longevity estimate later in the useful life of the power source.
摘要:
An implantable medical device includes a control circuit for controlling the operation of the device and for obtaining physiological data from a patient in which the medical device is implanted. The implanted device also includes a communication circuit for transmitting the physiological data to an external device. A first power source is coupled to the control circuit and provides power to the control circuit. A second power source is coupled to the communication circuit and provides power to the communication circuit.
摘要:
An implantable medical device includes a control circuit for controlling the operation of the device and for obtaining physiological data from a patient in which the medical device is implanted. The implanted device also includes a communication circuit for transmitting the physiological data to an external device. A first power source is coupled to the control circuit and provides power to the control circuit. A second power source is coupled to the communication circuit and provides power to the communication circuit.
摘要:
A method and apparatus for measuring the depletion level (depth of discharge) of a lithium-iodine battery in an implantable medical device. A first set of measurements are made to determine the internal impedance of the battery, and a second set of measurements are made to determine the geometric capacitance of the battery, which has been found to correlate closely to the depth of discharge of the battery. The measurements are all made while the pacemaker is first temporarily decoupled from the medical device circuitry. The first measurements are made during a time window following a known change in resistive load across the terminals of the battery, and are capable of being correlated with 1-kHz qualification testing data made on the battery at the time of manufacture. The second measurements are made when the known load is periodically coupled and decoupled to the terminals of the battery at a rate of 80-kHz. The resulting data can be used to monitor depth of discharge throughout the operable life of the battery.