Abstract:
An image processing device includes a point-image restoration processing unit 40 which receives a photographic image as input, and subjects the photographic image to a point-image restoration process based on point-image restoration information to generate a restored image, an area information output unit 45 which outputs area information relating to a specific area in the restored image where restoration strength of the point-image restoration process based on the point-image restoration information is equal to or greater than a threshold value, a display control unit 50 which receives the restored image and the area information as input and performs display control to highlight the specific area in the restored image based on the area information, and a display unit 55 which highlights at least the specific area based on the display control by the display control unit 50.
Abstract:
An image processing device includes a statistical information acquiring unit, an optical information acquiring unit, a filter information calculating unit and a filter coefficient calculating unit. The filter information calculating unit obtains filter information of a restoration filter for point image restoration processing according to at least one of statistical information and optical information. The filter information includes information related to number of taps of the restoration filter and information indicating a kind of symmetry of the restoration filter. The filter coefficient calculating unit calculates a filter coefficient of the restoration filter according to the statistical information and the optical information with at least the information related to the number of taps of the restoration filter and the information indicating the kind of the symmetry of the restoration filter of the filter information as a constraint condition.
Abstract:
According to the present invention, when restoration processing of a taken image by the use of a restoration filter corresponding to a subject distance is performed, by storing only a corresponding restoration filter in a subject distance range between the estimation variation close range and the infinity such that a restoration filter in a range on the nearer side than the estimation variation close range is not provided from the beginning, it is thereby possible to reduce the number of restoration filters held beforehand.
Abstract:
Provided is an image processing system capable of coping with data which is obtained in a new color filter array, and making full use of the performance of a receiving-side device by reducing the influence of a difference in the performance of the receiving-side device on an image quality. An image processing system 100 includes a transmitting-side device 101 and a receiving-side device 102. The transmitting-side device 101 generates intermediate data by preprocessing RAW data, generates three-plane color data by processing synchronization of the intermediate data, and outputs placement information for specifying pixel positions corresponding to the three-plane color data and the intermediate data. The receiving-side device 102 restores the intermediate data using the three-plane color data and the placement information from the transmitting-side device 101, and generates the three-plane color data from the restored intermediate data.
Abstract:
One aspect of the present invention thinning-reads pixel signals from the multiple pixels according to a thinning pattern from an image pickup element, or extracts pixel signals from the multiple pixels according to the thinning pattern from a color image that is read from the image pickup element and corresponds to the color filter array, and acquires a thinned color image. Then, moving image data is generated on the basis of the thinned color image. Adoption of the thinned color image as a target image to be subjected to moving image processing can facilitate reduction in processing time per frame, and prevent the frame rate from decreasing. Furthermore, thinning-reading pixels from the image pickup element can facilitate reduction in time of reading an image from the image pickup element.
Abstract:
In the color imaging element and the imaging device according to an aspect of the present invention, a basic array pattern is repeatedly placed in a first direction and in a second direction, the basic array pattern includes four or more rectangular patterns each corresponding to 3×2 pixels each composed of a first filter, a color filter array includes therein grating filter lines surrounding the four directions of the rectangular pattern, the color filter array includes therein the first filters each disposed in each line in the first direction, in the second direction, in a third direction, and in a fourth direction, and the basic array pattern includes therein one or more second filters of each color, each disposed in each line in the first direction in the second direction.
Abstract:
A color filter array of a color imaging element includes a basic array pattern P of 4×4 pixels in which RGB filters corresponding to red (R), green (G) and blue (B) are arrayed, this basic array pattern P is repeatedly disposed in a horizontal direction and a vertical direction, a G filter is disposed in each pixel line in four directions of horizontality, verticality, oblique upper right and oblique lower right, and R and B filters are disposed in each pixel line in the horizontal direction and vertical direction of the color filter array. Moreover, the color filter array includes consecutive first filters of two or more pixels in four directions of horizontality, verticality, oblique upper right and oblique lower right.
Abstract:
A single-plate color imaging element where an array of the color filters includes a basic array pattern of M×N provided with first filters corresponding to a first color with one or more colors and second filters corresponding to a second color with two or more colors with contribution ratios for obtaining luminance signals lower than the first color, the first filters are arranged in a check pattern shape in the basic array pattern, one or more second filters corresponding to each color of the second color are arranged in each line in the horizontal and vertical directions of the array of the color filters in the basic array pattern, and a proportion of the number of pixels of the first color corresponding to the first filters is greater than a proportion of the number of pixels of each color of the second color corresponding to the second filters.
Abstract:
An image pickup device includes: a color filter having repeatedly disposed basic array patterns configured with first and second array patterns disposed symmetrically about a point, wherein the first array pattern has a first filter placed at the 4 corner and center pixels of a 3×3 pixel square array, a second filter placed in a line at the horizontal direction center of the square array, and a third filter placed in a line at the vertical direction center of the square array, and the second array pattern has the same placement of the first filter as the first array pattern and has placement of the second filter and placement of the third filter swapped over to that of the first array pattern; and phase difference detection pixels placed at positions corresponding to the first filter at a top and bottom edge sides in the array pattern.
Abstract:
Interpolation precision of phase difference detection pixels is raised. An image pickup device includes: a color filter disposed with a repeating basic array pattern configured by 3×3 pixel square arrays of a first array pattern and a second array pattern disposed symmetrically about a point; a first phase difference detection pixel that is placed at a position of a pixel corresponding to 1 corner portion out of the 4 corner portions of at least one array pattern in 1 pair of the first array pattern and the second array pattern out of 2 pairs of the first array pattern and the second array pattern configuring the basic array pattern; and a second phase difference detection pixel that is placed at a position of a pixel corresponding to 1 corner portion out of the 4 corner portions in the array pattern, out of the first array pattern.