Abstract:
System and method embodiments are provided for traffic engineering (TE) in software defined networking (SDN). The embodiments enable a complete end-to-end TE solution between a user equipment (UE) and a source/destination across a radio access network (RAN). In an embodiment, a method in a network component for TE in a SDN includes receiving TE information from a first core network component in a core network, a RAN component, wherein the RAN is communicably coupled to the core network, wherein the TE information includes a TE objective; and determining a TE decision between at least one UE and a second core network component in the core network according to the TE information and the TE objective, wherein the TE decision comprises information for at least one end-to-end path solution between the at least one UE and the second core network wherein the path traverses the core network and the RAN.
Abstract:
An embodiment logical function architecture for next-generation 5G wireless networks may include a control plane comprising a software defined topology (SDT) logical entity configured to establish a virtual data-plane logical topology for a service, a software defined resource allocation (SDRA) logical entity configured to map the virtual data-plane topology to a physical data-plane for transporting service-related traffic over the wireless network, and a software defined per-service customized data plane process (SDP) logical entity configured to select transport protocol(s) for transporting the service-related traffic over a physical data-plane of the wireless network. An embodiment virtual service specific serving gateway (v-s-SGW) for next-generation 5G networks may be assigned specifically to a service being provided by a group of wirelessly enabled devices, and may be responsible for aggregating service-related traffic communicated by the group of wirelessly enabled devices.
Abstract:
A network function and a method for associating a UE of a UE group to a PDU session with in a CN. The NF establishes a shared PDU session for the UE group before all of the UEs in the UE group register with the CN and binds a UE that has not yet registered with the CN to the shared PDU session when the UE registers with the CN, provided the UE will share at least one of a UL UP connection and a DL UP connection associated with the shared PDU session. The NF may be an SMF.
Abstract:
Aspects of the disclosure provide a system and method used for allowing a path selection or reselection (hereby (re)selection). In some embodiments data packets for a session between a UE and an application system (AS) can utilize a pre-established user plane path between the AS and an access node (AN) which serves the UE. This can allow for faster session set-up times as a new user plane (UP) path need not be established for every new session if existing UP paths can be utilized. Some embodiments allow an application aware (re)selection of the user plane.
Abstract:
The present application provides a method and apparatus for supporting general registration of user equipment to facilitate MO only mode preferences.
Abstract:
Implementations of this application provide communications methods, devices, and chips. In an implementation, a method comprises: sending, by a centralized unit user plane (CU-UP) of an access network to a centralized unit control plane (CU-CP) of the access network, an interface setup request message to request to setup an E1 interface, the interface setup request message comprises an identity of a public land mobile network (PLMN) served by the CU-UP and a network slice identifier corresponding to the public land mobile network, wherein the network slice identifier identifies single network slice selection assistance information (S-NSSAI) or an S-NSSAI list; and sending, by the CU-CP, an interface setup response message to the CU-UP after receiving the interface setup request message.
Abstract:
Embodiments of the invention provide methods and systems to support QoS for unicast and groupcast casting types using sidelink radio bearers over the NR PC5 interface. Embodiments of the invention provide methods and systems to configure and activate sidelink radio bearers using AS-level signaling between the Tx UE and Rx UEs over the NR PC5 interface. Embodiments of the invention provide methods and systems to perform resource allocation and resource reservation in a platoon for sidelink transmissions.
Abstract:
Interference costs on virtual radio interfaces can be modeled as a function of loading in a wireless network to estimate changes in spectral efficiency and/or resource availability that would result from a provisioning decision. In one example, this modeling is achieved through cost functions that are developed from historical and/or simulated resource cost data corresponding to the wireless network. The cost data may include interference data, spectral efficiency data, and/or loading data for various links over a common period of time (e.g., a month, a year, etc.), and may be analyzed and/or consolidated to obtain correlations between interference costs and loading on the various links in the network. As an example, a cost function may specify an interference cost on one virtual link as a function of loading on one or more neighboring virtual links.
Abstract:
Embodiments are provided for implementing control plane functionality to configure a data plane at a plurality of network nodes. A software defined topology (SDT) component is configured to determine a data plane logical topology indicating a plurality of selected nodes and a logical architecture connecting the selected nodes. The data plane logical topology enables traffic delivery for a service or virtual network for an end-customer or operator. A software defined networking (SDN) component is configured to interact with the SDT component and map the data plane logical topology to a physical network. The mapping includes allocating network nodes including the selected nodes and network resources which enable communications for the service or virtual network and meet QoS requirement. A software defined protocol (SDP) component is configured to interact with the SDN and define data plane protocol and process functionality for the network nodes.
Abstract:
An embodiment method for downlink machine type communications (MTC), includes receiving, at a base station, parameters including a geographic location related to a remote equipment (RE), receiving a predicate identifying the RE, determining a target zone in which the RE is located, determining a radio bearer associated with the target zone, and transmitting a data packet and the predicate by the base station on the radio bearer to a plurality of REs disposed in the target zone, the plurality of REs comprising at least the RE.