摘要:
A non-volatile memory cell (10) is provided employing two transistors (11, 12) connected in series. A floating gate structure (13), formed with a single polysilicon deposition, is shared by each transistor (11, 12) to store the logic condition of the memory cell (10). To program and erase the memory cell (10), a voltage potential is placed on the floating gate (13) which modulates the transistors (11, 12) so only one is conducting during read operations. The gate capacitance of the transistors (11, 12) is used to direct the movement of electrons on or off the floating gate structure (13) to place or remove the stored voltage potential. The two transistor memory cell (10) couples one of two voltage potentials as the output voltage so no sense amp or buffer circuitry is required. The memory cell (10) can be constructed using traditional CMOS processing methods since no additional process steps or device elements are required.
摘要:
Latch-up of CMOS devices is improved by using a structure having electrically coupled but floating doped regions between the N-channel and P-channel devices. The doped regions desirably lie substantially parallel to the source-drain regions of the devices between the Pwell and Nwell regions in which the source-drain regions are located. A first (“N BAR”) doped region forms a PN junction with the Pwell, spaced apart from a source/drain region in the Pwell, and a second (“P BAR”) doped region forms a PN junction with the Nwell, spaced apart from a source/drain region in the Nwell. A further NP junction lies between the N BAR and P BAR regions. The N BAR and P BAR regions are ohmically coupled, preferably by a low resistance metal conductor, and otherwise floating with respect to the device or circuit reference potentials (e.g., Vss, Vdd).
摘要:
Latch-up of CMOS devices (20, 20′) is improved by using a structure (40, 40′, 80) having electrically coupled but floating doped regions (64, 64′; 65, 65′) between the N-channel (44) and P-channel (45) devices. The doped regions (64, 64′; 65, 65′) desirably lie substantially parallel to the source-drain regions (422, 423; 432, 433) of the devices (44, 45) between the Pwell (42) and Nwell (43) regions in which the source-drain regions (422, 423; 432, 433) are located. A first (“N BAR”) doped region (64, 64′) forms a PN junction (512) with the Pwell (42), spaced apart from a source/drain region (423) in the Pwell (42), and a second (“P BAR”) doped region (55, 55′) forms a PN junction (513) with the Nwell (43), spaced apart from a source/drain region (433) in the Nwell (43). A further NP junction (511) lies between the N BAR (64) and P BAR (65) regions. The N BAR (64) and P BAR (65) regions are ohmically coupled, preferably by a low resistance metal conductor (62), and otherwise floating with respect to the device or circuit reference potentials (e.g., Vss, Vdd).
摘要:
A nonvolatile memory cell (10) includes a single n-channel insulated gate FET (11) having a single floating gate (12). The FET (11) operates asymmetrically in a sense that the capacitance of a parasitic gate-source capacitor (24) is smaller than the capacitance of a parasitic gate-drain capacitor (26). The asymmetric condition is achievable either by fabricating the FET (11) as an asymmetric structure (30, 60) or by adjusting the capacitance of the parasitic capacitors (24, 26) through terminal biasing when the FET (11) is a short channel device. The potential of the floating gate (12) is controlled by biasing the source (14), drain (16), and substrate (18) of the FET (11). The cell (10) is programmed by moving charge onto the floating gate (12) via hot carrier injection, erased by moving charge from the floating gate (12) via tunneling, and read by sensing the conductive state of the FET (11).
摘要:
A single level gate NVM device (10) includes p-channel and n-channel floating gate FETs (12, 14), an erasing capacitor (26), and a programming capacitor (28). The NVM device (10) is programmed by applying a programming voltage to the programming capacitor (28) and applying a ground voltage to the sources of the FETs (12, 14). The NVM device (10) is erased by applying an erasing voltage to the erasing capacitor (26) and applying ground voltage to the sources of the FETs (12, 14) and to the programming capacitor (28). Data is read from the NVM device (10) by sensing a voltage level at the drains of the FETs (12, 14) while applying a logic high voltage to the source of the p-channel FET (12), a logic low voltage to the source of the n-channel FET (14), and a reading voltage to the programming capacitor (28).
摘要:
Latch-up of CMOS devices is improved by using a structure having electrically coupled but floating doped regions between the N-channel and P-channel devices. The doped regions desirably lie substantially parallel to the source-drain regions of the devices between the Pwell and Nwell regions in which the source-drain regions are located. A first (“N BAR”) doped region forms a PN junction with the Pwell, spaced apart from a source/drain region in the Pwell, and a second (“P BAR”) doped region forms a PN junction with the Nwell, spaced apart from a source/drain region in the Nwell. A further NP junction lies between the N BAR and P BAR regions. The N BAR and P BAR regions are ohmically coupled, preferably by a low resistance metal conductor, and otherwise floating with respect to the device or circuit reference potentials (e.g., Vss, Vdd).
摘要:
Methods and apparatus are provided for a MOSFET (50, 99, 199) exhibiting increased source-drain breakdown voltage (BVdss). Source (S) (70) and drain (D) (76) are spaced apart by a channel (90) underlying a gate (84) and one or more carrier drift spaces (92, 92′) serially located between the channel (90) and the source (70, 70′) or drain (76, 76′). A buried region (96, 96′) of the same conductivity type as the drift space (92, 92′) and the source (70, 70′) or drain (76, 76′) is provided below the drift space (92, 92′), separated therefrom in depth by a narrow gap (94, 94′) and ohmically coupled to the source (70, 70′) or drain (76, 76′). Current flow (110) through the drift space produces a potential difference (Vt) across this gap (94, 94′). As the S-D voltage (Vo) and current (109, Io) increase, this difference (Vt) induces high field conduction between the drift space (92, 92′) and the buried region (96, 96′) and diverts part (112, It) of the S-D current (109, Io) through the buried region (96, 96′) and away from the near surface portions of the drift space (92, 92′) where breakdown generally occurs. Thus, BVdss is increased.