摘要:
A gate dielectric and a gate conductor layer are formed on sidewalls of at least one semiconductor fin. The gate conductor layer is patterned so that a gate electrode is formed on a first sidewall of a portion of the semiconductor fin, while a second sidewall on the opposite side of the first sidewall is not controlled by the gate electrode. A partially gated finFET, that is, a finFET with a gate electrode on the first sidewall and without a gate electrode on the second sidewall is thus formed. Conventional dual gate finFETs may be formed with the inventive partially gated finFETs on the same substrate to provide multiple finFETs having different on-current in the same circuit such as an SRAM circuit.
摘要:
Structure and method for providing a programmable anti-fuse in a FET structure. A method of forming the programmable anti-fuse includes: providing a p− substrate with an n+ gate stack; implanting an n+ source region and an n+ drain region in the p− substrate; forming a resist mask over the n+ drain region, while leaving the n+ source region exposed; etching the n+ source region to form a recess in the n+ source region; and growing a p+ epitaxial silicon germanium layer in the recess in the n+ source region to form a pn junction that acts as a programmable diode or anti-fuse.
摘要:
A method of forming an improved static random access memory (SRAM) interconnect structure is provided. The method includes forming a sidewall spacer around a periphery of a patterned poly-silicon layer formed over a silicon layer of a semiconductor substrate; removing the patterned poly-silicon layer for exposing a portion of a cap layer; etching the exposed portion of the cap layer for revealing a portion of the silicon layer; etching the potion of the silicon layer, in which a portion of said silicon layer connects at least a portion of pull-down device of said SRAM to at least a portion of pull-up device of said SRAM; forming a gate oxide; and forming a gate conductor over the gate oxide. An interconnect structure is also provided.
摘要:
Hybrid SRAM circuit, hybrid SRAM structures and method of fabricating hybrid SRAMs. The SRAM structures include first and second cross-coupled inverters coupled to first and second pass gate devices. The pull-down devices of the inverters are FinFETs while the pull-up devices of the inverters and the pass gate devices are planar FETs or pull-down and pull-up devices of the inverters are FinFETs while the pass gate devices are planar FETs.
摘要:
A one-transistor static random access memory (1T SRAM) device and circuit implementations are disclosed. The 1T SRAM device includes a planar field effect transistor (FET) on the surface of the cell and a vertical PNPN device integrated to one side of the FET. A base of the PNP of the PNPN device is electrically common to the emitter/collector of the FET and a base of the NPN of the PNPN device is electrically common to the channel region of the FET. The anode pin of the PNPN device may be used as a word line or a bit line. A method of forming the 1T SRAM device is also disclosed.
摘要:
A semiconductor structure and a method for fabricating the semiconductor structure include a first semiconductor fin and a second semiconductor fin of the same overall height over a substrate. Due to the presence of a channel stop layer at the base of one of the first semiconductor fin and the second semiconductor fin, but not the other of the first semiconductor fin and the second semiconductor fin, the first semiconductor fin and the second semiconductor fin have different channel heights. The semiconductor fins may be used to fabricating a corresponding first finFET and a corresponding second finFET with differing performance characteristics due to the different channel heights of the first semiconductor fin and the second semiconductor fin.
摘要:
A semiconductor structure and a method for forming the same. The method includes providing a semiconductor structure which includes a semiconductor substrate. The semiconductor substrate includes (i) a top substrate surface which defines a reference direction perpendicular to the top substrate surface and (ii) first and second semiconductor body regions. The method further includes forming (i) a gate divider region and (ii) a gate electrode layer on top of the semiconductor substrate. The gate divider region is in direct physical contact with gate electrode layer. A top surface of the gate electrode layer and a top surface of the gate divider region are essentially coplanar. The method further includes patterning the gate electrode layer resulting in a first gate electrode region and a second gate electrode region. The gate divider region does not overlap the first and second gate electrode regions in the reference direction.
摘要:
A one-transistor static random access memory (1T SRAM) device and circuit implementations are disclosed. The 1T SRAM device includes a planar field effect transistor (FET) on the surface of the cell and a vertical PNPN device integrated to one side of the FET. A base of the PNP of the PNPN device is electrically common to the emitter/collector of the FET and a base of the NPN of the PNPN device is electrically common to the channel region of the FET. The anode pin of the PNPN device may be used as a word line or a bit line. A method of forming the 1T SRAM device is also disclosed.
摘要:
A Content Addressable Memory (CAM) cell with PFET passgate SRAM cells which results in a smaller cell size because of the more balanced number of 8 PFET devices and 8 NFET devices. The PFET passgates allow the size of the SRAM cell pulldown devices to be reduced, and lower the power dissipation in the SRAM during standby or during read/write.
摘要:
Switchable diffused junction capacitors providing selectable data signal paths in a logic gate. A control circuit, such as a current switch, renders one of the junction capacitors conductive to present a large diffusion capacitance which acts as a fast signal pathway to the respectively applied data signal. Non-conducting junction capacitor presents a negligible diffusion capacitance which essentially acts as an open circuit to the respectively applied data signal. The control circuit response is slow and non-critical. The combination of a slow response control to configure selectable fast response data signal pathways is useful in "half good" or "partial good" semiconductor chip technologies, data buffers with fast flush, and self-test, self-repair chip designs, among others.