Abstract:
A surgical system comprises a display screen, an endoscopic device, and a non-transitory, computer-readable storage medium that stores a plurality of instructions for execution by one or more computer processors. The instructions are for: determining a current position of a reference point on the endoscopic device relative to a reference frame; determining a first vector from the current position to a position of a first landmark relative to the reference frame; transforming the first vector from the reference frame to an image reference frame that corresponds to a perspective of an image capturing device disposed at a tip of the endoscopic device; displaying a graphical representation of the transformed first vector along with a current image captured by the image capturing device—the displayed graphical representation indicates a direction to steer the tip of the endoscopic device towards the first landmark; and periodically repeating the above processes.
Abstract:
A medical device comprises a tube including a wall with a plurality of slits oriented generally transverse to a longitudinal axis of the tube and defined by opposing surfaces. A pair of force transmission elements is actuatable to alter the tube between a flexible state and a stiffened state. A first force transmission element of the pair is coupled to an opposite side of the tube from the second force transmission element of the pair. The surgical device also includes a plurality of routing members coupled to the wall of the tube and configured to receive and route the force transmission elements along a length of the tube while permitting the length of the tube to flex and compress. Equal tension forces applied to the pair of force transmission elements compress the tube to create the stiffened state by deforming regions of the tube disposed between the plurality of slits.
Abstract:
A minimally invasive system comprises an elongate instrument that includes a flexible proximal portion, a rigid distal portion, and a lumen extending from a proximal end to a distal end of the elongate instrument. The lumen defines a longitudinal axis of the elongate instrument. The flexible proximal portion is fixedly coupled to the rigid distal portion. The system further comprises a stylet slidably disposed within the elongate instrument. The stylet includes a flexible body fixedly coupled to a steerable portion and includes a sensor. The stylet is movable within the elongate instrument between a retracted condition and an extended configuration. A plurality of actuation cables extend through the stylet and terminate in the steerable portion, which comprises a bend-resistive section and a bendable section. The bendable section includes a plurality of articulable segments linked by the actuation cables and includes a plurality of joint pivots disposed between adjacent articulable segments.
Abstract:
A robotic system includes a camera having an image frame whose position and orientation relative to a fixed frame is determinable through one or more image frame transforms, a tool disposed within a field of view of the camera and having a tool frame whose position and orientation relative to the fixed frame is determinable through one or more tool frame transforms, and at least one processor programmed to identify pose indicating points of the tool from one or more camera captured images, determine an estimated transform for an unknown one of the image and tool frame transforms using the identified pose indicating points and known ones of the image and tool frame transforms, update a master-to-tool transform using the estimated and known ones of the image and tool frame transforms, and command movement of the tool in response to movement of a master using the updated master-to-tool transform.
Abstract:
Tool force information is provided to a user of a telesurgical system using an alternative modality other than force reflection on a master manipulator, such as providing the information on user-visible, user-audible, or haptic “buzz” or “viscosity” indicators, so as to allow expanded processing, including amplification, of the information, while not significantly affecting the stability of the telesurgical system or any closed-loop control systems in the telesurgical system.
Abstract:
Methods and system perform tool tracking during minimally invasive robotic surgery. Tool states are determined using triangulation techniques or a Bayesian filter from either or both non-endoscopically derived and endoscopically derived tool state information, or from either or both non-visually derived and visually derived tool state information. The non-endoscopically derived tool state information is derived from sensor data provided either by sensors associated with a mechanism for manipulating the tool, or sensors capable of detecting identifiable signals emanating or reflecting from the tool and indicative of its position, or external cameras viewing an end of the tool extending out of the body. The endoscopically derived tool state information is derived from image data provided by an endoscope inserted in the body so as to view the tool.
Abstract:
What is described is a minimally invasive system comprising an elongate instrument and a stylet slidably disposed within the lumen of the elongate instrument. The instrument includes a flexible proximal portion fixedly coupled to a rigid distal portion, and a lumen extending from a proximal end to a distal end through the flexible proximal portion and the rigid distal portion and defining a longitudinal axis of the instrument. The stylet includes a flexible body fixedly coupled to a steerable portion and a sensor element extending through the flexible body. The stylet is movable within the instrument between a retracted condition in which the steerable portion is retracted within the instrument and an extended configuration in which the steerable portion at least partially extends from the rigid distal portion of the instrument.
Abstract:
A multi-user medical robotic system for collaboration or training in minimally invasive surgical procedures includes first and second master input devices, a first slave robotic mechanism, and at least one processor configured to generate a first slave command for the first slave robotic mechanism by switchably using one or both of a first command indicative of manipulation of the first master input device by a first user and a second command indicative of manipulation of the second master input device by a second user. To facilitate the collaboration or training, both first and second users communicate with each other through an audio system and see the minimally invasive surgery site on first and second displays respectively viewable by the first and second users.
Abstract:
A slave manipulator manipulates a medical device in response to operator manipulation of an input device through joint control systems. The stiffness and strength of the slave manipulator are adjustable according to criteria such as the mode of operation of the slave manipulator, the functional type of the medical device currently being held by the slave manipulator, and the current phase of a medical procedure being performed using the slave manipulator by changing corresponding parameters of the control system. For safety purposes, such changes are not made until it is determined that it can be done in a smooth manner without causing jerking of the medical device. Further, an excessive force warning may be provided to surgery staff when excessive forces are being commanded on the slave manipulator for more than a specified period of time.
Abstract:
A medical robotic system has a robotic arm holding a medical device, and a control system for controlling movement of the arm according to operator manipulation of an input device. If the medical device is being commanded to a state exceeding a limitation by a threshold amount, then the control system disengages control of the medical device by the input device, servos the arm so that it remains in its current state, servos the input device so that it is set at a position such that a force being applied on the input device remains at its current level, requests the operator to lighten hold of the input device, sets a parameter associated with the input device upon detecting such lightened hold so that the medical device is commanded to a different state that does not exceed the limitation, and reengages control of the medical device by the input device.