Abstract:
Methods and apparatus relating to adaptive interrupt coalescing for energy efficient mobile platforms are described. In one embodiment, one or more interrupts are buffered based on communication throughput. At least one of the one or more interrupts are released in response to expiration of an interrupt coalescing time period. Other embodiments are also claimed and disclosed.
Abstract:
For example, an apparatus may include a segment parser to parse scrambled data bits of a PPDU into a first plurality of data bits and a second plurality of data bits, the PPDU to be transmitted in an OFDM transmission over an aggregated bandwidth comprising a first channel in a first frequency band and a second channel in a second frequency band; a first baseband processing block to encode and modulate the first plurality of data bits according to a first OFDM MCS for transmission over the first channel in the first frequency band; and a second baseband block to encode and modulate the second plurality of data bits according to a second OFDM MCS for transmission over the second channel in the second frequency band.
Abstract:
For example, an apparatus may include a segment parser to parse scrambled data bits of a PPDU into a first plurality of data bits and a second plurality of data bits, the PPDU to be transmitted in an OFDM transmission over an aggregated bandwidth comprising a first channel in a first frequency band and a second channel in a second frequency band; a first baseband processing block to encode and modulate the first plurality of data bits according to a first OFDM MCS for transmission over the first channel in the first frequency band; and a second baseband block to encode and modulate the second plurality of data bits according to a second OFDM MCS for transmission over the second channel in the second frequency band.
Abstract:
Methods and apparatus implementing Hardware/Software co-optimization to improve performance and energy for inter-VM communication for NFVs and other producer-consumer workloads. The apparatus include multi-core processors with multi-level cache hierarchies including and L1 and L2 cache for each core and a shared last-level cache (LLC). One or more machine-level instructions are provided for proactively demoting cachelines from lower cache levels to higher cache levels, including demoting cachelines from L1/L2 caches to an LLC. Techniques are also provided for implementing hardware/software co-optimization in multi-socket NUMA architecture system, wherein cachelines may be selectively demoted and pushed to an LLC in a remote socket. In addition, techniques are disclosure for implementing early snooping in multi-socket systems to reduce latency when accessing cachelines on remote sockets.
Abstract:
In a communication method to communicate between an access point (AP) and first and second communication stations (STAs) can include calculating joint transmission information based on the first and the second STAs, establishing an uplink communication between the AP and the first STA; and establishing a downlink communication between the AP and the second STA jointly with the uplink communication between the AP and the first STA based on the joint transmission information.
Abstract:
Methods, apparatuses, and computer readable media for dynamic resource unit allocation for wireless local-area networks (WLANs) include an apparatus of an access point (AP) including processing circuitry configured to determine a group of stations (STAs) and first RUs for uplink (UL) multi-user (MU) orthogonal frequency division multiple-access (OFDMA) transmissions. The processing circuitry is further configured to transmit a trigger frame (TF) including indications of the determined first RUs for the group of STAs to transmit trigger-based (TB) physical layer (PHY) protocol data unit (PPDUs) (TB PPDUs) in response to the TF. The processing circuitry may be further configured to in response to a STA not responding to the TF, determine the STA as being inactive, and reallocate to active STAs RUs of inactive STAs, and transmit a second TF to the group of STAs that are active.
Abstract:
Technologies for monitoring network traffic include a computing device that monitors network traffic at a graphics processing unit (GPU) of the computing device. The computing device manages computing resources of the computing device based on results of the monitored network traffic. The computing resources may include one or more virtual machines to process network traffic that is to be monitored at the GPU the computing device. Other embodiments are described and claimed.
Abstract:
Embodiments of a station (STA) and method of communication are generally described herein. The STA may be included in a first plurality of STAs affiliated with a first multi-link logical entity (MLLE). A plurality of links may be established between the first MLLE and a second MLLE, wherein the second MLLE may be affiliated with a second plurality of STAs. The STA may receive a first subset of a sequence of MAC protocol data units (MPDUs). A second subset of the sequence of MPDUs may be transmitted by another STA of the first plurality of STAs. The STA may transmit a block acknowledgement (BA) frame that includes: a number of BA bitmaps, configurable to values greater than or equal to one; and BA control information for each of the BA bitmaps.
Abstract:
A computer-implemented method can include receiving a queue depth for a receive queue of a network interface controller (NIC), determining whether a power state of a central processing unit (CPU) core mapped to the receive queue should be adjusted based on the queue depth, and adjusting the power state of the CPU core responsive to a determination that the power state of the CPU core should be adjusted.
Abstract:
Embodiments of an access point (AP), station (STA), and method of communication are generally described herein. The AP may perform channel sensing in a first channel of a first frequency band and a second channel of a second frequency band to obtain access for transmission of a physical layer convergence procedure (PLCP) protocol data unit (PPDU) that comprises multiple subframes. The transmission of the PPDU may be configurable to use a multi-band layer-1 aggregation of the first and second channels. While the second channel is unavailable, the AP may transmit one or more subframes on the first channel without usage of the multi-band layer-1 aggregation. When it is determined that the second channel has become available, the AP may switch to synchronized transmission of the subframes on the first and second channels in accordance with the multi-band layer-1 aggregation.