Abstract:
A method for a minimally invasive surgical system is disclosed including capturing camera images of a surgical site; generating a graphical user interface (GUI) including a first colored border portion in a first side and a second colored border in a second side opposite the first side; and overlaying the GUI onto the captured camera images of the surgical site for display on a display device of a surgeon console. The GUI provides information to a user regarding the first electrosurgical tool and the second tool in the surgical site that is concurrently displayed by the captured camera images. The first colored border portion in the GUI indicates that the first electrosurgical tool is controlled by a first master grip of the surgeon console and the second colored border portion indicates the tool type of the second tool controlled by a second master grip of the surgeon console.
Abstract:
A system comprises: a robotic arm operatively coupleable to a tool comprising a working end; and an input device communicatively coupled to the robotic arm. The input device is manipulatable by an operator. The system further comprises a processor configured to cause an image of a work site, captured by an image capture device from a perspective of an image reference frame, to be displayed on a display. The image of the work site includes an image of the working end of the tool. The processor is further configured to determine a position of the working end of the tool in the image of the work site and render a tool information overlay at the position of the working end of the tool in the image of the work site. The tool information overlay visually indicates an identity of the input device.
Abstract:
A system and method of breakaway clutching in a device includes an arm having a first joint and a control unit coupled to the arm. The control unit includes one or more processors. The control unit switches the first joint from a first state of the first joint to a second state of the first joint in response to an external stimulus applied to the arm exceeding a first threshold. Movement of the first joint is more restricted in the first state than in the second state. The control unit further switches the first joint from the second state to the first state in response to a speed associated with the first joint falling below a speed threshold. The first threshold is based on at least one first property of the arm. The speed threshold is based on at least one second property of the arm.
Abstract:
A patient side cart can have a first sensor at an arm and a second sensor at a main column. A sterile barrier system can include a first drape to cover at least a portion of the arm of the cart, a first attachment device connected to the first drape, a second drape to cover at least a portion of the main column of the cart, and a second attachment device connected to the second drape. In an installed position of the first drape, the first sensor can detect he first attachment device and in an installed position of the second drape, the second sensor can to detect the second attachment device. A system comprising the cart and barrier system can output a warning in response to one or both of the first sensor not detecting the first attachment device and the second sensor not detecting the second attachment device.
Abstract:
A teleoperational medical system comprises a teleoperational assembly including an operator control system, a first teleoperational manipulator, a first medical instrument, and a processing unit including one or more processors. The first teleoperational manipulators is configured for operation by an operator control device of the operator control system. The first teleoperational manipulator is configured to control the operation of the first medical instrument in a surgical environment. The processing unit is configured to display an image of a field of view of the surgical environment and display a menu proximate to an image of the first medical instrument in the image of the field of view. The menu includes at least one state indicator representing a state of a component of the first medical instrument.
Abstract:
A system and method of breakaway clutching in a device includes an arm including a first joint and a control unit coupled to the arm. The control unit includes one or more processors. The control unit switches the first joint from a first state of the first joint to a second state of the first joint in response to an external stimulus applied to the arm exceeding a first threshold, wherein movement of the first joint is more restricted in the first state of the first joint than in the second state of the first joint, switches the first joint from the second state to the first state in response to a speed associated with the first joint falling below a speed threshold, and prevents the switching of the first joint from the first state to the second state when the arm is in a predetermined mode.
Abstract:
A system comprises a teleoperational manipulator configured to control operation of a medical instrument in a surgical environment. The system further comprises an operator input system including an input device and a processing unit including one or more processors. The processing unit is configured to display an image of a field of view of the surgical environment and display a menu including a set of directionally arranged menu options. The processing unit is further configured to transition the input device from a first constraint state for interaction with the medical instrument to a second constraint state for interaction with the menu. In the second constraint state, the input device is constrained to move in one or more directions based on the set of directionally arranged menu options.
Abstract:
A method comprises generating a workspace volume indicating an operational region of reach. The method further comprises referencing the workspace volume to an image capture reference frame of an image capture device, and the image capture device captures image data. The method further comprises determining a reachable workspace portion of the image data that is within the workspace volume. In some embodiments, the method further comprises determining an unreachable portion of the image data that is outside of the workspace volume. In other embodiments, the method further comprises displaying the reachable workspace portion of the image data without the unreachable portion of the image data. In still other embodiments, the method further comprises displaying a false graphic in place of the unreachable portion of the image data.
Abstract:
A method of assigning an auxiliary input device to control a surgical instrument in a computer-assisted surgical system includes detecting a first surgical instrument coupled to a first manipulator interface assembly of a computer-assisted surgical system, the first manipulator interface assembly being controlled by a first input device. The method further includes detecting an initial relative position of the first input device and either assigning control of an auxiliary function of the first surgical instrument to a first auxiliary input device disposed in a left position relative to a second auxiliary input device if the initial relative position of the first input device is detected to be at a left position relative to a second input device or assigning may also include assigning control of an auxiliary function of the first surgical instrument to the second auxiliary input device disposed in a right position relative to the first auxiliary input device if the initial relative position the first input device is detected to be at a right position relative to the second input device.
Abstract:
A cart for supporting one or more instruments for a computer-assisted, remote procedure can include a base and a support structure extending from the base and adjustable to different configurations, the support structure being configured to support one or more instruments to perform a remote procedure. The cart can further include a steering interface configured to be grasped by a user and a sensor mechanism configured to detect a force applied to the steering interface. The cart also can include a drive system comprising a control module operably coupled to receive an input from the sensor mechanism in response to the force applied to the steering interface and information about a configuration of the support structure, the control module operably coupled to output a movement command based on the received input from the sensor mechanism and the information about the configuration of the support structure. A driven wheel may be mounted to the base and configured to impart wheeled motion to the cart in response to the movement command.