Abstract:
Apparatus and methods for ablation efficacy are described herein where a hood having a deployable elongated feature can extend beyond a distal face of the hood. The elongated feature can channel the energy to the deeper regions within the tissue (such as trabeculated regions or other tissue structures) such that the energy can be delivered to the target tissue despite small or large irregularities in the target tissue surface (or region) and/or changes in the relative distances between the hood and the target tissue.
Abstract:
The delivery of biological compounds to ischemic and/or infarcted tissue are described herein where such a system may include a deployment catheter and an attached imaging hood deployable into an expanded configuration. In use, the imaging hood is placed against or adjacent to a region of tissue to be imaged in a body lumen that is normally filled with an opaque bodily fluid such as blood. A translucent or transparent fluid, such as saline, can be pumped into the imaging hood until the fluid displaces any blood, thereby leaving a clear region of tissue to be imaged via an imaging element in the deployment catheter. Additionally, any number of therapeutic tools can also be passed through the deployment catheter and into the imaging hood for performing any number of procedures on the tissue for identifying, locating, and/or accessing ischemic and/or infarcted tissue.
Abstract:
In vivo visualization systems are described which facilitate tissue treatment by a user in utilizing real time visualized tissue images with generated three-dimensional models of the tissue region of interest, such as the left atrial chamber of a subject's heart. Directional indicators on the visualized tissue as well as the imaging systems may be utilized while other variations may utilize image rotation or manipulation of visualized tissue regions to facilitate catheter control. Moreover, visualized tissue regions may be combined with imaged tissue regions as well as navigational information to further facilitate tissue treatments.
Abstract:
Electrode placement and connection systems are described which allow for the electrical connection and maintenance of one or more electrodes positioned on a substrate which is subjected to a variety of mechanical stresses. Electrodes may also be formed on flexible circuit assemblies integrated within or along the hood. The circuit assemblies may also provide structural support to the hood during delivery and/or deployment. Such a system may include an imaging hood having an aperture through which transparent fluid is flowed and one or more electrodes positioned along or about the hood. As the hood is configured between a low-profile and opened configuration, these electrodes may remain electrically coupled despite the mechanical stresses subjected to the electrodes and the connections thereto.
Abstract:
The delivery of biological compounds to ischemic and/or infarcted tissue are described herein where such a system may include a deployment catheter and an attached imaging hood deployable into an expanded configuration. In use, the imaging hood is placed against or adjacent to a region of tissue to be imaged in a body lumen that is normally filled with an opaque bodily fluid such as blood. A translucent or transparent fluid, such as saline, can be pumped into the imaging hood until the fluid displaces any blood, thereby leaving a clear region of tissue to be imaged via an imaging element in the deployment catheter. Additionally, any number of therapeutic tools can also be passed through the deployment catheter and into the imaging hood for performing any number of procedures on the tissue for identifying, locating, and/or accessing ischemic and/or infarcted tissue.