摘要:
A multirate processing circuit (100) with a resampling filter (106) to accept a sampled input signal (104) sampled with a first clock rate and to filter the sampled input signal to remove spectral components above a spectral bandwidth of a second clock rate. The sampled input signal represents a signal that is more efficiently processed at the second clock rate, which is fractionally related to the first clock rate. The multirate processing circuit (100) also has a discrete time processor (108) that receives the resampling filter output (130) and processes that output at an integer power of two multiple of the first clock rate. The discrete time processor (108) further excludes selected samples from the processing so as to effectively perform discrete time processing of the resampling filter output (130) at the integer power of two multiple of the second clock rate.
摘要:
A radio frequency receiver (102) includes at least one amplifier (108, 114 and 122) for amplifying a signal received by the radio frequency receiver, an automatic gain control system (158) for controlling a gain of the at least one amplifier, and a direct current offset correction filter (142) for reducing any direct current component of the signal amplified by the at least one amplifier. The direct current offset correction filter has a bandwidth that is dynamically controlled by a change in the gain of the at least one amplifier. The radio frequency receiver also includes a digital automatic gain control unit (150) having a bandwidth that is dynamically controlled by the change in the gain of the at least one amplifier.
摘要:
A radio frequency (RF) transceiver is provided. The RF transceiver comprises a transmit path comprising an output coupled to an RF antenna, a feedback path comprising an input coupled to the output of the transmit path, and a DC offset calibration module comprising a first input coupled to an output of the feedback path, a second input to receive a first signal and an output connected to an input of the transmit path. The DC offset calibration module is operable to determine a first direct current (DC) offset of a closed-loop path comprising the transmit path and the feedback path and determine a second DC offset based on the feedback path exclusive of the transmit path.
摘要:
A baseband receiver and corresponding methods are arranged and configured to mitigate effects of direct current (DC) distortion and process an Orthogonal Frequency Division Multiplexing (OFDM) signal as provided from a direct conversion radio or receiver. The baseband receiver includes an OFDM demodulator configured to demodulate the OFDM signal, a post processor coupled to the OFDM demodulator and configured to provide symbols corresponding to the OFDM signal, and a compensator coupled to at least one of the OFDM demodulator and the post processor and configured to reduce error rates out of the baseband receiver that result from DC distortion in the direct conversion radio.
摘要:
An analog filter (10) having a bandwidth tracking circuit includes an analog filter element (14) and a digital tracking loop (22). The digital tracking loop (22) compares a magnitude difference to a predetermined threshold to generate an error signal. The magnitude difference is determined during a closed loop bandwidth calibration by subtracting a first magnitude of an analog input signal over a predetermined frequency range to a second magnitude of the analog input signal over the predetermined frequency range located near the bandwidth frequency. Use of the digital tracking loop (22) provides a digital approach for achieving bandwidth tracking of an analog filter without the need for achieving any manufacturing process matching between the analog filter and the tracking circuit itself. The analog filter element (14) may be either a lowpass, highpass, bandpass, active or passive filter element.
摘要:
A modulation distortion compensation system for a phase locked loop 109 includes a compensation function (115) that is arranged to be coupled to a tuning voltage signal (117) corresponding to a tuning voltage from the phase locked loop and is configured to select a filter response from a plurality of filter responses, where the filter response corresponds to the tuning voltage. The distortion compensation system further includes a filter 224 that is configured to distort a modulation signal in accordance with the filter response and provide a distorted signal suitable for being coupled to a modulation input 211 of a feedback divider 209 included with the phase locked loop, wherein the distorted signal when used by the feedback divider will facilitate modulation and compensation of a radio frequency signal provided by the phase locked loop. Various environmental measurements in addition to the tuning voltage can also be used in selecting the filter response.
摘要:
A method and apparatus are provided for providing improved radio frequency (RF) receiver signal correction. For RF receiver circuitry (106) having receive path and a warmup period associated therewith and including at least one analog baseband gain control stage (218) having a gain associated therewith, the method includes the step of performing a DC correction calculation operation during the warmup period to derive a DC correction value having a first component and a second component for each of the at least one gain control stage (218). The DC correction calculation step includes the steps of performing a first closed loop correction (460) of a baseband path to derive the first component of the DC correction value and performing a second closed loop correction (462) of the receive path as a function of the (218) gain during the warmup period to derive the second component of the DC correction value. During operation after the warmup period (464, 466), an open loop correction is performed for instantaneous DC correction as function of the PMA (218) gain and the DC correction value.
摘要:
A method and system controls transmit power by combining the advantages of digital attenuation and analog baseband step attenuators by calibration to overcome the limitations of analog step attenuators. The calibration technique uses highly accurate digital attenuators to determine the actual sizes of the analog steps as analog step attenuator is stepped through a range of attenuation levels. A method of calibration accurately measures attenuation steps comparison to a digital attenuator so that the attenuation actually realized by the analog step attenuator is accurately known. Therefore, the difference between the attenuation realized by the analog step attenuator and the desired attenuation is accurately known. The difference is realized in the digital attenuator and the attenuation resulting from the composite of the digital and analog step attenuator can very accurately realize the requested attenuation.
摘要:
A method includes performing a search method to determine a pair of receiver path correction signals, performing the search method to determine a pair of transmitter path correction signals, and using the pairs of receiver path and transmitter path correction signals to suppress a carrier signal. An apparatus includes a first pair of summers, an upconverter circuit coupled to the first pair of summers, a multiplexer coupled to the upconverter circuit, to a ground, and to an RF front end, a downconverter circuit coupled to the multiplexer, a second pair of summers coupled to the downconverter circuit, and a correction circuit coupled to the first and second pairs of summers.
摘要:
A full serial implementation of a M-level correlation based demodulator (100) includes a two's complement, pass-through, zero-out complex conjugate multiplier element (102), a boxcar filter (104) coupled to the multiplier element, a complex magnitude approximater element (106) coupled to the boxcar filter and a maximum value and index holding element (108). The multiplier element reuses common products along an M-level of cross-correlation to reduce multiplication functions at a rate 2 times M faster than a sampling rate at an input of the demodulator.