Abstract:
A method includes synchronizing a received signal with at least two orthogonal frequency division multiplexed OFDM training signals having only in-phase values and being real in the time domain and determining a frequency offset correction from the synchronization of the received signal and training symbols responsive to a cross-correlation between said training symbols to enable estimating all possible frequency offsets for correction for enabling OFDM demodulation of said received signal.
Abstract:
An optical signal transmitting system, comprising: an optical transmitter including one or more input terminals and an output terminal; and a temporal polarization interleaver including an input terminal and an output terminal, wherein the output terminal of the optical transmitter is communicatively coupled to the input terminal of the temporal polarization interleaver, wherein: the optical transmitter is configured to receive one or more input signals through its one or more input terminals, generate an output signal using the one or more input signals, the output signal including a x-polarized tributary and a y-polarized tributary that is pulse-to-pulse aligned with the x-polarized tributary, and transmit the output signal to the temporal polarization interleaver; and the temporal polarization interleaver is configured to receive the output signal from the optical transmitter and cause a predefined phase delay to one of the x-polarized tributary and the y-polarized tributary.
Abstract:
The present method includes providing a continuous wave CW optical source with a fixed frequency spacing, separating multiple wavelengths of said CW optical source into different channels, modulating the multiple wavelengths of the CW optical source to generate an OFDM electrical signal with multiple sub-channels and each sub-channel has a channel subcarrier spacing , mixing the OFDM electrical signal with a radio frequency RF sinusoidal signal at a frequency ξf by an electrical mixer and generating a double sideband optical signal, filtering the double sideband signal to generate a single sideband optical signal, combining all channels of the single sideband optical signal, and directly detecting each sub-band of the single sideband optical OFDM signal with a respective detector, the detector converting the optical signal to an electrical signal for digital signal processing.
Abstract:
Methods and devices are provided to facilitate production of optical signals that exhibit reduced crosstalk noise and intersymbol interference. In some configurations, a multi-stage optical interleaver, including a first and a second optical interleaver, is used to process a first and a second set of input optical channels. The composite optical output of the multi-stage interleaver includes the first set of optical channels and the second set of optical channels, where each of the first and second set of input optical channels is processed once by the first optical interleaver and once by the second optical interleaver. As such, the first and second sets of input optical channels are each filtered twice using only two optical interleavers.
Abstract:
A method of generating a multi-subcarrier optical signal is disclosed. A local oscillator oscillates one or more data signals to generate one or more oscillating data signals. A series of modulators phase modulate a lightwave to generate a phase modulated lightwave, wherein the series of modulators are driven by the one or more oscillating data signals. The intensity modulator modulates the phase modulated lightwave, the intensity modulator being driven by one of the oscillating data signals, to generate the multi-subcarrier optical signal.
Abstract:
A companding transform technique is incorporated into orthogonal frequency division multiplexed signals to reduce the peak-to-average ratio of the signals. Prior to the companding transform, an inverse discrete Fourier transform is performed on the signal. Following the companding transform, the signal is compressed, at which point the compressed signal may be advantageously optically transmitted.
Abstract:
In a bride circuit comprising a lamp choke that might partially saturate during the ignition of the lamp, at least one of the switches is switched off when the amount of charge displaced through it in forward direction equals a predetermined value. Despite the partial paturation of the lamp choke the amplitude of the ignition voltage is thereby effectively controlled.
Abstract:
Aspects of the present invention include apparatus and methods for transmitting and receiving signals in communication systems. A multicarrier generator generates a multicarrier signal. An optical demultiplexer separates the multicarrier signal into separate multicarrier signals. At least one QPSK modulator modulates signals from the separate multicarrier signals. An optical multiplexer combines the QPSK modulated signals into a multiplexed signal. The multiplexed signal is then transmitted.
Abstract:
Techniques for optical communications using optical orthogonal frequency division multiplexing (OFDM) include operating a signal transmitter to modulate laser light to produce modulated light that carries, in optical domain, OFDM subcarriers for carrying communication information, without a frequency guard band between the OFDM subcarriers, and pilot subcarriers for channel estimation at a signal receiver, each pilot subcarrier being free of communication information, and controlling optical power of the pilot subcarriers to vary with optical frequencies of the pilot subcarriers so that optical power of a pilot subcarrier at a high optical frequency is different from optical power of another pilot subcarrier at a low optical frequency.
Abstract:
An optical transmitter comprises: first and second sets of optical in-phase and quadrature modulators; an integrable tunable laser assembly; a first polarization beam splitter that is configured to divide the continuous-waveform optical signal into a x-polarized tributary and a y-polarized tributary, each of the x-polarized tributary and the y-polarized tributary is modulated by one of the first and second sets of optical in-phase and quadrature modulators in accordance with the two respective input signals; a second polarization beam splitter that is configured to combine the modulated x-polarized tributary and the modulated y-polarized tributary into one optical signal; and an optical modulator that is configured to modulate the combined optical signal using a driving voltage, wherein the driving voltage has a bias point that is reduced by a predefined offset from a predefined reference voltage level.