摘要:
An organic light emitting display having red, green, blue, cyan, magenta, and yellow color modulation layers. The organic light emitting display includes a substrate, a first electrode arranged on the substrate, a second electrode arranged on the first electrode, an organic functional layer arranged between the first electrode and the second electrode, the organic functional layer comprises at least an emission layer, and red, green, blue, cyan, magenta, and yellow color modulation layers separated from each other, wherein one of the first electrode and the second electrode is transparent and is arranged between each color modulation layer and the emission layer. Accordingly, it is possible to maintain white balance even for an aged display while having enhanced color reproducibility.
摘要:
A method of fabricating a donor substrate for a laser induced thermal imaging (LITI) process. A base substrate is prepared. A light-to-heat conversion layer is formed on the base substrate. A buffer layer is formed on the light-to-heat conversion layer. The surface roughness of the buffer layer is increased by treating the surface of the buffer layer. A transfer layer is formed on the surface-treated buffer layer. By using the donor substrate, a patterning process can be performed better during the fabrication of the OLED.
摘要:
A donor substrate for a laser induced thermal imaging method and an organic electroluminescent display device fabricated using the same are provided. The donor substrate may be constructed with base film; a light-to-heat conversion layer formed on the base film; a buffer layer formed on the entire surface of the light-to-heat conversion layer; a metal layer formed on the buffer layer; and a transfer layer formed of an organic material and formed on the metal layer, thereby enhancing the characteristics of a transfer pattern by transferring a small molecular material using the laser induced thermal imaging method.
摘要:
A device of fabricating a donor substrate for a LITI includes a vacuum chamber; a donor substrate which moves in line and passes through an inside of the vacuum chamber; and a depositing device arranged in the vacuum chamber and forming a transfer layer on the donor substrate.
摘要:
Methods of fabricating an OLED and a donor substrate are provided. The method includes: preparing a base substrate of a donor substrate; forming a light to heat conversion layer and a transfer layer on the base substrate; preparing a donor substrate including performing a dry cleaning process after forming the transfer layer; preparing a substrate, on which the transfer layer of the donor substrate is to be transferred; laminating the donor substrate and the substrate; and patterning the transfer layer by irradiating a laser to transfer the transfer layer on the substrate.
摘要:
A laser induced thermal imaging apparatus for fabricating an organic light emitting display is provided. The laser induced thermal imaging apparatus includes a stage where a substrate is positioned; a transport device for transporting a donor substrate; a laminator for laminating the substrate to the donor substrate; a laser optical unit for performing the LITI, and a chamber supplied with an atmospheric pressure of an inert gas in which the stage, the laminator, and the laser optical unit are positioned.
摘要:
A method of fabricating an organic light emitting display is capable of improving device characteristics by patterning a plurality of organic layers of an emission layer and a charge transport layer using a thermal transfer method to optimize thicknesses of the organic layers corresponding to R, G and B pixels. The method includes: forming lower electrodes of R, G and B pixels on a substrate; forming an organic layer on the layer; and forming an upper electrode on the organic layer. Formation of the organic layer includes forming a portion of a hole injection layer and a hole transport layer of the R, G and B pixels over an entire surface of the substrate, the organic layer comprising a first portion and a second portion, the organic layer having a thickness equal to a sum of the thicknesses of the hole injection layer and the hole transport layer. Formation of the organic layer further comprises patterning the second portion of the organic layer, and patterning emission layers of the R, G and B pixels. The second portion of the organic layer and the emission layers of the R, G and B pixels are simultaneously formed by a thermal transfer method using a thermal transfer device having the second portion of the organic layer and the emission layers of the R, G and B pixels as a transfer layer.
摘要:
The invention is directed to an improved organic electroluminescent device. In one embodiment, the OLED includes a thin film transistor formed in a non-emission region on an insulating substrate that also includes source and drain electrodes. The OLED further includes a lower electrode formed in an emission region on the insulating substrate and connected to one electrode of the source/drain electrodes through a contact hole. The OLED yet further includes an organic emission layer formed in the emission region on the lower electrode, and an upper electrode formed on the organic emission layer, wherein the lower electrode has a surface with its corners rounded off. The lower electrode acts as a pixel electrode. Having its surface with corners rounded off prevents short-induced defects caused by outgassing.
摘要:
A light-emitting polymer composition for a light-emitting layer in an organic EL display device includes at least first and second light-emitting polymers having different interfacial characteristics which lower a cohesion between elements of the first and second light-emitting polymers.
摘要:
A donor film includes a base film, a light-to-heat conversion layer formed on the base film, and a transfer layer formed on the light-to-heat conversion layer, wherein the transfer layer is formed of at least two layers and its first layer adjacent to the base film is a polymeric material and its second layer above the polymeric material is a small molecular material. The donor film allows a polymeric material to be used as an upper layer in the organic layers constituting the full color organic EL display device when a lower layer of the organic layer is formed of a small molecular organic material. The donor film, a method for fabricating the donor film, and a full color organic EL display device fabricated using this donor film are provided. The EL display device according to the present invention has superior properties.