摘要:
A magnetic layer which is exchange-coupled to an antiferromagnetic layer and given an exchange bias therefrom is laminated via a non-magnetic layer on another magnetic layer to form an MR film. The antiferromagnetic layer (PtMn, PdMn or NiMn) is laminated on a ground layer(Zr, Hf, Zr—Hf, Zr—Co, Zr—Au, Ni—O, Co—O or Fe—O) so that the antiferromagnetic layer has a surface of an average roughness of 1-5 Å. A conduction layer is formed adjacent to the magnetic layer for sensing a magnetic field. The conduction layer is made of Cu, Ag, Au or an alloy composed of two selected therefrom. A layer made of Zr, Ta, Zr—O, Ta—O or a mixture thereof is laminated on the conduction layer. The MR film exhibits a large resistance variation linearly at near zero magnetic field with an excellent thermal stability.
摘要:
A magnetoresistive element generally includes consecutively an antiferromagnetic layer, a first ferromagnetic layer, a non-mangetic layer, and a second ferromagnetic layer. Instead of the non-magnetic layer, the magnetoresistive element may include a combination of a Co layer, a non-magnetic layer, and a Co layer. The antiferromagnetic layer is made of nickel oxide, a mixture of nickel oxide and cobalt oxide, or a laminate of nickel oxide and cobalt oxide. The ferromagnetic layer has a thickness of 1 to 10 nm, and the element has a height of 0.1 to 1 um. The non-magnetic layer has a thickness of 2 to 3 nm, and the antiferromagnetic layer has a thickness of 5 to 30 nm. The magnetoresistive element has an appropriate cross point, outputs an excellent reproduced signal, and has a desirable half-width with respect to the output signal.
摘要:
The invention relates to a magnetoresistance material, i.e. a conductive material that exhibits magnetoresistance, which is an inhomogeneous system consisting of a nonmagnetic matrix and ultrafine particles of a ferromagnetic material such as Co or Ni--Fe--Co dispersed in the nonmagnetic matrix. With the aim of reducing deterioration of the magnetoresistance effect, an alloy or mixture of at least two metal elements selected from Cu, Ag, Au and Pt is used as the material of the nonmagnetic matrix. Optionally, the nonmagnetic matrix may contain a limited quantity of a supplementary element selected from Al, Cr, In, Mn, Mo, Nb, Pd, Ta, Ti, W, V, Zr and Ir. A film of the magnetoresistance material can be formed on a substrate, and it is optional to interpose a buffer layer between the film and the substrate and/or cover the film with a protective layer.