摘要:
A method for forming an electrical device that includes forming a high-k gate dielectric layer over a semiconductor substrate that is patterned to separate a first portion of the high-k gate dielectric layer that is present on a first conductivity device region from a second portion of the high-k gate dielectric layer that is present on a second conductivity device region. A connecting gate conductor is formed on the first portion and the second portion of the high-k gate dielectric layer. The connecting gate conductor extends from the first conductivity device region over the isolation region to the second conductivity device region. One of the first conductivity device region and the second conductivity device region may then be exposed to an oxygen containing atmosphere. Exposure with the oxygen containing atmosphere modifies a threshold voltage of the semiconductor device that is exposed.
摘要:
A semiconductor structure includes a SOI substrate having a top silicon layer overlying an insulation layer, which overlies a bottom silicon layer; a capacitor disposed at least partially in the insulation layer; a device disposed at least partially on the top silicon layer, which device is coupled to a doped portion of the top silicon layer; a backside strap of first epitaxially-deposited material, at least a first portion of the backside strap underlying the doped portion, the backside strap being coupled to the doped portion of the top silicon layer at a first end of the backside strap and to the capacitor at a second end of the backside strap; and second epitaxially-deposited material that at least partially overlies the doped portion of the top silicon layer, the second epitaxially-deposited material further at least partially overlying the first portion.
摘要:
Strained Si and strained SiGe on insulator devices, methods of manufacture and design structures is provided. The method includes growing an SiGe layer on a silicon on insulator wafer. The method further includes patterning the SiGe layer into PFET and NFET regions such that a strain in the SiGe layer in the PFET and NFET regions is relaxed. The method further includes amorphizing by ion implantation at least a portion of an Si layer directly underneath the SiGe layer. The method further includes performing a thermal anneal to recrystallize the Si layer such that a lattice constant is matched to that of the relaxed SiGe, thereby creating a tensile strain on the NFET region. The method further includes removing the SiGe layer from the NFET region. The method further includes performing a Ge process to convert the Si layer in the PFET region into compressively strained SiGe.
摘要:
A method and structure for forming a field effect transistor with reduced contact resistance are provided. The reduced contact resistance is manifested by a reduced metal semiconductor alloy contact resistance and a reduced conductively filled via contact-to-metal semiconductor alloy contact resistance. The reduced contact resistance is achieved in this disclosure by texturing the surface of the transistor's source region and/or the transistor's drain region. Typically, both the source region and the drain region are textured in the present disclosure. The textured source region and/or the textured drain region have an increased area as compared to a conventional transistor that includes a flat source region and/or a flat drain region. A metal semiconductor alloy, e.g., a silicide, is formed on the textured surface of the source region and/or the textured surface of the drain region. A conductively filled via contact is formed atop the metal semiconductor alloy.
摘要:
A method of forming a complementary metal oxide semiconductor (CMOS) structure having multiple threshold voltage devices includes forming a first transistor device and a second transistor device on a semiconductor substrate. The first transistor device and second transistor device initially have sacrificial dummy gate structures. The sacrificial dummy gate structures are removed and a set of vertical oxide spacers are selectively formed for the first transistor device. The set of vertical oxide spacers are in direct contact with a gate dielectric layer of the first transistor device such that the first transistor device has a shifted threshold voltage with respect to the second transistor device.
摘要:
A field effect transistor structure that uses thin semiconductor on insulator channel to control the electrostatic integrity of the device. Embedded stressors are epitaxially grown in the source/drain area from a template in the silicon substrate through an opening made in the buried oxide in the source/drain region. In addition, a dielectric layer is formed between the embedded stressor and the semiconductor region under the buried oxide layer, which is located directly beneath the channel to suppress junction capacitance and leakage.
摘要:
Embodiments of the present invention provide the ability to fabricate devices having similar physical dimensions, yet with different operating characteristics due to the different effective channel lengths. The effective channel length is controlled by forming an abrupt junction at the boundary of the gate and at least one source or drain. The abrupt junction impacts the diffusion during an anneal process, which in turn controls the effective channel length, allowing physically similar devices on the same chip to have different operating characteristics.
摘要:
A three dimensional FET device structure which includes a plurality of three dimensional FET devices. Each of the three dimensional FET devices include an insulating base, a three dimensional fin oriented perpendicular to the insulating base, a gate dielectric wrapped around the three dimensional fin and a gate wrapped around the gate dielectric and extending perpendicularly to the three dimensional fin, the three dimensional fin having a device width being defined as the circumference of the three dimensional fin in contact with the gate dielectric. At least a first of the three dimensional FET devices has a first device width while at least a second of the three dimensional FET devices has a second device width. The first device width is different than the second device width. Also included is a method of making the three dimensional FET device structure.
摘要:
In one exemplary embodiment of the invention, a semiconductor structure includes: a substrate; and a plurality of devices at least partially overlying the substrate, where the plurality of devices include a first device coupled to a second device via a first raised source/drain having a first length, where the first device is further coupled to a second raised source/drain having a second length, where the first device comprises a transistor, where the first raised source/drain and the second raised source/drain at least partially overly the substrate, where the second raised source/drain comprises a terminal electrical contact, where the second length is greater than the first length.
摘要:
In one exemplary embodiment, a semiconductor structure including: a SOI substrate having a top silicon layer overlying an insulation layer, the insulation layer overlies a bottom silicon layer; a capacitor disposed at least partially in the insulation layer; a device disposed at least partially on the top silicon layer, the device is coupled to a doped portion of the top silicon layer; a backside strap of first epitaxially-deposited material, at least a first portion of the backside strap underlies the doped portion, the backside strap is coupled to the doped portion of the top silicon layer at a first end of the backside strap and to the capacitor at a second end of the backside strap; and second epitaxially-deposited material that at least partially overlies the doped portion of the top silicon layer, the second epitaxially-deposited material further at least partially overlies the first portion.