摘要:
An apparatus performs efficient coding techniques to more efficiently resolve geometric relationships between video data units and thereby determine neighboring video data units for a current video data unit. The apparatus comprises a geometric resolution unit that obtains video data defining a plurality of video data units, and determines, for the current one of the plurality of video data units to be processed, a partition width and a video unit number of the current video data unit. The geometric resolution unit accesses, using the determined partition width and video unit number, a plurality of look-up tables (LUTs) to output one or more indices identifying one or more of the plurality of video data units that neighbor the current video data unit.
摘要:
Techniques for decoding the run_before fields in a CAVLC encoded bitstream for H.264 are disclosed. In one aspect, the codewords corresponding to a plurality of consecutive initial zero-value run_before codewords are stored in a look-up table, allowing the decoding of such a plurality of run_before codewords in a single computation cycle. In another aspect, the look-up table is additionally configured to decode the next non-zero run_before value after the initial zero-value run_before codewords in the same computation cycle.
摘要:
This disclosure is directed to video coding techniques that support normal single layer video coding, or scalable video coding with features such as signal-to-noise ratio (SNR) scalability and spatial scalability. A video coding device may implement these techniques in a video decoder that includes a motion compensation module and a filter. The motion compensation module decodes a prediction frame from a digital video signal, wherein the motion compensation module determines each block of the inter-coded frame from motion vectors encoded in the digital video signal. The filter adaptively filters one or more of the inter-coded blocks based on a signal either encoded or inferred from the digital video signal. In some instances, the video decoder may adaptively apply different filter functions, one in the horizontal and another in the vertical direction, based on the signal. By implementing these techniques, the video decoder may increase the visual quality of the resulting decoded digital video signal while reducing complexity.
摘要:
The disclosure describes FGS video coding techniques that use cycle-aligned fragments (CAFs). The techniques may perform cycle-based coding of FGS video data block coefficients and syntax elements, and encapsulate cycles in fragments for transmission. The fragments may be cycle-aligned such that a start of a payload of each of the fragments substantially coincides with a start of one of the cycles. In this manner, cycles can be readily accessed via individual fragments. Some cycles may be controlled with a vector mode to scan to a predefined position within a block before moving to another block. In this manner, the number of cycles can be reduced, reducing the number of fragments and associated overhead. The CAFs may be entropy coded independently of one another so that each fragment may be readily accessed and decoded without waiting for decoding of other fragments. Independent entropy coding may permit parallel decoding and simultaneous processing of fragments.
摘要:
When coding a fine granularity scalability layer separated by color components, a marker is provided to signal the end of each color component. In particular, markers are used to separate luminance (Y) component from chrominance components (U,V) so that the chrominance components can be discarded in the truncation of the FGS layer. A different marker may be used to indicate the location of the color separation marker. In video editing, the chrominance components of encoded video data of the FGS layer are stored while the luminance component is decoded so that video effects can be applied to the luminance component. In the base layer, the luminance component is extracted from the decoded base layer for video effect application.
摘要:
The present invention provides a method and module for performing the update operation in motion compensated temporal filtering for video coding. The update operation is performed according to coding blocks in the prediction residue frame. Depending on macroblock mode in the prediction step, a coding block can have different sizes. Macroblock modes are used to specify how a macroblock is segmented into blocks. In the prediction step, the reverse direction of the motion vectors is used directly as an update motion vector and therefore no motion vector derivation process is performed. Motion vectors that significantly deviate from their neighboring motion vectors are considered not reliable and excluded from the update step. An adaptive filter is used in interpolating the prediction residue block for the update operation. The adaptive filter is an adaptive combination of a short filter and a long filter.
摘要:
A method for coding spatial and quality enhancement information in scalable video coding using variable length codes. Conventional systems have been capable of using variable length codes only with nonscalable video coding. In the present invention, the coded block pattern for each block of information, significance passes, and refinement passes can all be coded with different types of variable length codes.
摘要:
A method for coding spatial and quality enhancement information in scalable video coding using variable length codes. Conventional systems have been capable of using variable length codes only with nonscalable video coding. In the present invention, the coded block pattern for each block of information, significance passes, and refinement passes can all be coded with different types of variable length codes. The present invention also provides for a variable length encoder/decoder that dynamically adapts to the actual symbol probability. The encoder/decoder of the present invention counts the number of times each symbol is coded. Based upon these counts, the encoder/decoder selects how many symbols to group when forming a code word. The encoder also uses these counts to select the specific codeword that should be used.
摘要:
A method of encoding and decoding a scalable video data stream comprising a base layer and at least one enhancement layer. A scalable data stream is encoded, wherein the data stream includes at least one non-required picture in a temporal location of a layer wherein decoding of pictures in an upper layer at and succeeding the said temporal location in decoding order does not require said non-required picture, and wherein information of the at least one non-required picture is signalled in the scalable video data stream. In the decoding phase, the signalled information is decoded and pictures in a layer above the non-required picture at and succeeding the said temporal location in decoding order are decoded without decoding said non-required picture.
摘要:
In scalable video coding where two predictive motion vectors are calculated: one from the current layer neighboring motion vectors and one from the co-located base layer motion vectors. One of the two predictive motion vectors is chosen as the predictive motion vector for current block. A flag bit is coded to indicate which predictive motion vector is chosen only if it is not possible to infer the layer from which the predictive motion vector for the current block comes. Such inference is possible in many situations, such as when both predictive motion vectors are substantially the same, or only one of the vectors is reliable or available.