Abstract:
Systems and methods are disclosed for selecting resources for direct device to device (D2D) communications in a cellular communication network. Preferably, resources for the direct D2D communications are selected to minimize, or at least substantially reduce, interference that results from the direct D2D communications in the cellular communication network. In general, either an uplink resource or a downlink resource of the cellular communication network is selected for a direct D2D communication link between a first wireless device and a second wireless device in order to minimize, or at least substantially reduce, interference caused to a third wireless device that uses the same uplink and downlink resources in the same and/or a neighboring cell of the cellular communication network.
Abstract:
A base station node (BS) of a heterogeneous radio access network comprises a terminal locator (34) and a scheduler (36). The terminal locator (34) obtains an indication of location of a wireless terminal (30) in a cell served by the base station (BS), e.g., whether the wireless terminal (30) is in a center region (M) or an edge region (E) for the cell served by the base station node (BS). The scheduler (36) uses the indication of location to assign to the wireless terminal (30) a frequency of a frequency bandwidth usable by the heterogeneous radio access network. The scheduler (36) assigns a frequency from a partitioned portion of the frequency bandwidth if the cell served by the base station node is a micro cell and the wireless terminal is in an edge region of a micro cell. The scheduler (36) also assigns a frequency of the frequency bandwidth if the cell served by the base station node is a micro cell and the wireless terminal is in a center portion of the micro cell.
Abstract:
Systems and methods are disclosed for selecting resources for direct device to device (D2D) communications in a cellular communication network. In one embodiment, a downlink resource is selected as a resource for a direct D2D communication link between a first wireless device and a second wireless device if a base station serving each of the first and second wireless devices is equipped with an interference cancellation receiver and both the first and second wireless devices are less than a predefined threshold radio distance from their serving base station. An uplink resource is selected as a resource for the direct D2D communication link if the base station serving each of the first and second wireless devices is equipped with an interference cancellation receiver and at least one of the first and second wireless devices is more than the predefined threshold radio distance from its serving base station.
Abstract:
Embodiments herein relate to a method in a user equipment for handling a radio link failure in a radio communications network. The user equipment is served in a first cell controlled by a radio base station. The radio base station is comprised in the radio communications network, The user equipment detects a first indication of a failure of a radio link between the user equipment and the radio base station. The user equipment then transmits a second indication of radio link failure to the radio base station when the first indication is detected.
Abstract:
Methods of operating a base station serving a cell in a heterogeneous network and at least one relay node serving a subcell of the cell, in which a user equipment unit connects to the network via the base station or the relay node, are provided. The methods include receiving uplink access (Uu) signals at the relay node from the user equipment unit in a first frequency range, and transmitting uplink backhaul (Un) signals from the relay node to the base station in a second frequency range that is different from the first frequency range.
Abstract:
A heterogeneous radio access network (20) comprises a macro layer (22) including at least one macro base station (24) and a micro layer comprising at least one micro base station (26). In an example embodiment a base station node comprises a scheduler (40) and a communication interface (42). The scheduler (40) is configured to prepare a subframe for transmission over a radio interface by configuring the subframe to include a micro layer downlink control channel region in addition to a macro layer downlink control channel region. The communication interface (42) is configured to transmit at least the subframe over the radio interface
Abstract:
Embodiments herein relate to a method in a radio base station for enabling a user equipment to establish a connection in a radio communications network The user equipment is served in a first cell controlled by the radio base station. The radio base station is comprised in the radio communications network. The radio base station detects a failure of a radio link between the user equipment and the radio base station. The radio base station then forwards a user equipment context of the user equipment to a circuitry controlling a second cell when the failure is detected. The user equipment context enables the circuitry controlling the second cell to serve the user equipment and thereby enables the user equipment to establish the connection in the radio communications network.
Abstract:
Mechanisms for managing interference in heterogeneous networks are disclosed. A macro node triggers a handover of a user equipment (UE) being serviced by the macro node to a low power node (LPN) operating in a closed access operating mode wherein the LPN provides service to member UEs. The UE is a non-member of the LPN. The macro node determines a trigger condition, and based on the trigger condition signals the LPN to provide service to the UE. The macro node also directs the UE to execute the handover to the LPN.
Abstract:
A method and a radio network node (110) for scheduling a transmission from the radio network node (110) to a user equipment (120) are provided. The radio network node (110) obtains an indication of interference mitigation in a receiver in the user equipment (120). Next, the radio network node (110) selects a set of radio resources for the transmission based on the indication of interference mitigation, thereby scheduling the transmission.
Abstract:
Embodiments herein relate to a method in a transceiver (400) for enabling control of interference cancelling in the transceiver (400). The transceiver (400) is in a first decoding mode. The transceiver (400) stores a received signal comprising a data block. The transceiver (400) decodes the received signal using the first decoding mode, thereby obtaining the data block. When an event is triggered, the transceiver (400) retrieves the stored signal. The transceiver (400) decodes the retrieved signal using a second decoding mode, thereby obtaining the data block. The transceiver (400) controls the interference cancelling in the transceiver (400), based on the data block decoded using the first decoding mode and the data block decoded using the second decoding mode.