Abstract:
Provided are a method and a terminal device for setting uplink transmission power in a wireless communication system. A terminal acquires information on the time alignment group (TAG) for multiple supportable serving cells so as to constitute TAGs, checks whether an overlap section of subframe n and subframe n+1 for uplink transmission exists between TAGs, and sets uplink transmission power so as to scale the uplink transmission power (PCMAX) within the range that does not exceed the configured maximum transmission power (PCMAX) of the terminal in the checked overlap section. Here, the uplink transmission power considers the maximum transmission power for multiple serving cells contained in the TAGs.
Abstract:
The present application discloses a method for enabling a terminal to report channel status information in a base station cooperative wireless communication system. Particularly, the method for enabling a terminal to report channel status information in a base station cooperative wireless communication system comprises the steps of: receiving, from a serving base station, first resource setting information for a channel status information-reference signal (CSI-RS) and second resource setting information for measuring interference: receiving a triggering signal for reporting the channel status information from the serving base station; calculating the channel status information on the serving base station and/or one or more cooperative base stations by using the first resource setting information and the second resource setting information; and reporting the channel status information to the serving base station, wherein the first resource setting information and the second resource setting information include information on an antenna port capable of referring to a large scale property of a wireless channel.
Abstract:
Provided are a method and an apparatus for transmitting acknowledgement/not-acknowledgement (ACK/NACK) in a wireless communication system. The method comprises: receiving at least two downlink subframes among a plurality of downlink subframes; and transmitting, from an uplink subframe, the ACK/NACKs of the at least two downlink subframes, wherein at least two semi-persistent scheduling (SPS) data channels can be assigned to the plurality of the downlink subframes.
Abstract:
The present invention relates to a method for random access to a small cell by means of a terminal. The method can include the steps of: receiving a plurality of settings for a random access preamble; selecting one of the plurality of settings; and transmitting the random access preamble according to the one selected setting. Here, a resource on which the random access preamble can be transmitted can be provided in plurality in one subframe, and the preamble transmitted on each resource is distinguishable.
Abstract:
The present invention relates to a wireless communication system. More particularly, the present invention relates to a method in which a terminal transmits control information in a CA-based wireless communication system and to an apparatus for the method, the method comprising: a step of configuring a first cell and a second cell having different subframe configurations, the second cell has UL-DL configuration #0; a step of receiving a downlink control information (DCI) format including an N-bit field (N>1), for the second cell; and a step of transmitting a physical uplink shared channel (PUSCH) signal corresponding to the downlink DCI format through a subframe. The N-bit field indicates either an uplink (UL) index or a downlink assignment index (DAI). For PUSCH timing, in cases where a reference UL-DL configuration applied to the second cell is any one of UL-DL configurations #1 to #6, the N-bit field indicates the DAI.
Abstract:
The present invention relates to a wireless communication system, particularly, a method in which a terminal transmits control information in a CA-based wireless communication system and an apparatus for the method, the method comprising: configuring a first cell and a second cell having different subframe configurations, wherein the second cell has any one of UL-DL configuration #0 to #6; receiving a DC) format including a DAI field, for the second cell; and transmitting HARQ-ACK information relating to the downlink DCI format. For HARQ-ACK timing, in cases where a reference UL-DL configuration applied to the second cell is any one of UL-DL configurations #1 to #6, the DAI field is used in a process of transmitting the HARQ-ACK information. For HARQ-ACK timing, in cases where a reference UL-DL configuration applied to the second cell is #0, the DAI field is not used in a process of transmitting the HARQ-ACK information.
Abstract:
Provided is a method and an apparatus for transmitting a random access preamble in a time division duplex (TDD)-based wireless communication system. A wireless device selects an UL subframe in which a random access preamble is to be transmitted in a first serving cell. If the next subframe following the selected UL subframe is a DL subframe and the length of the random access preamble exceeds the UL subframe, the random access preamble may be generated such that the length of the random access preamble may not exceed the UL subframe.
Abstract:
The present invention relates to a wireless communication system. In particular, the present invention relates to a method and apparatus for transmitting control information by means of a terminal in a CA-based wireless communication system, including the steps of: forming first and second cells that include different subframe configurations, wherein the second cell includes TDD UL-DL configuration #0; receiving a UL grant by means of the first cell; and transmitting data corresponding to the UL grant by means of the second cell.
Abstract:
A method for receiving downlink data in a wireless communication system is provided. A user equipment receives downlink control information via a downlink control channel in a subframe. The downlink control information includes reference signal (RS) information and physical downlink shared channel (PDSCH) information. The RS information indicates transmission antenna ports, a scrambling identity and a number of transmission layers. The user equipment receives a RS for demodulating a PDSCH based on the RS information in the subframe. The RS is generated based on the scrambling identity. The user equipment receives downlink data via the PDSCH in the subframe. Resource element (RE) mapping information on REs assigned for the PDSCH is determined based on the PDSCH information.
Abstract:
Provided through the present application are a method and an apparatus for use in a radio communication system, which supports carrier aggregation and carries out communication in subframe units. More specifically, user equipment operating in a first type carrier for receiving from a base station, a first piece of control information, which is related to the first type carrier and a second type carrier that support the carrier aggregation, can measure a radio signal to carry out radio resource management with respect to the first type carrier by using a first reference signal, which is included in the first type carrier, and/or a second reference signal, which is included in the second type carrier.