Abstract:
A medical device and associated method determine a signal amplitude of a sensor signal produced by a MEMS sensor, compare the signal amplitude to a stiction detection condition, detect stiction of the MEMS sensor in response to the signal amplitude meeting the stiction detection condition, and automatically provide a corrective action in response to detecting the stiction.
Abstract:
A device for generating a plurality of output voltages from a single input energy supply source is described. The device includes a switched capacitor voltage converter that provides each of the output voltages having different supply ratios. The supply ratio is defined as a function of the input voltage provided to the switched capacitor voltage converter by the energy supply source. The switched capacitor voltage converter includes a plurality of capacitors selectively coupled to a plurality of switches that dynamically configure the capacitors into a plurality of stacked configurations. Switching between the plurality of stacked configurations may be controlled based on predetermined criteria.
Abstract:
A medical device communication system includes a receiver adapted to receive radio frequency (RF) signals and configured to operate in a first mode to poll for an RF signal for a first time interval to detect an element of a valid input signal during the first time interval. In response to detecting the element of a valid input signal in the first time interval, the receiver operates in a second mode to poll for the RF signal for a second time interval to analyze the RF signal over the second time interval to detect a valid modulation of the RF signal. In response to detecting a valid modulation of the RF signal during the second time interval, the receiver is enabled to establish a communication session with a transmitting device.
Abstract:
Hermetically sealed assemblies, for example, that include IC chips, are configured for incorporation within a connector terminal of an implantable medical electrical lead, preferably within a contact member of the terminal. An assembly may include two feedthrough subassemblies, welded to either end of the contact member, to form an hermetic capsule, in which an IC chip is enclosed, and a tubular member, which allows a lumen to extend therethrough, along a length of the terminal. A multi-electrode lead may include multiplexer circuitry, preferably a switch matrix element and a communications, control and power supply element that are electrically coupled to the contact member and to another contact member of the terminal. Each pair of switch matrix switches allows for any two of the electrodes to be selected, in order to deliver a stimulation vector, via stimulation pulses from a device/pulse generator, to which the connector terminal is connected.
Abstract:
This disclosure is directed to the synchronization of clocks of a secondary implantable medical device (IMD) to a clock of a primary IMD. The secondary IMD includes a communications clock. The communications clock may be synchronized based on at least one received communications pulse. The secondary IMD further includes a general purpose clock different than the communications clock. The general purpose clock may be synchronized based on at least one received power pulse. The communications clock may also be synchronized based on the at least one received power pulse.
Abstract:
In situations in which an implantable medical device (e.g., a subcutaneous ICD) is co-implanted with a leadless pacing device (LPD), it may be important that the subcutaneous ICD knows when the LPD is delivering pacing, such as anti-tachycardia pacing (ATP). Techniques are described herein for detecting, with the ICD and based on the sensed electrical signal, pacing pulses and adjusting operation to account for the detected pulses, e.g., blanking the sensed electrical signal or modifying a tachyarrhythmia detection algorithm. In one example, the ICD includes a first pace pulse detector configured to obtain a sensed electrical signal and analyze the sensed electrical signal to detect a first type of pulses having a first set of characteristics and a second pace pulse detector configured to obtain the sensed electrical signal and analyze the sensed electrical signal to detect a second type of pulses having a second set of characteristics.
Abstract:
Techniques and systems for monitoring cardiac arrhythmias and delivering electrical stimulation therapy using a subcutaneous implantable cardioverter defibrillator (SICD) and a leadless pacing device (LPD) are described. For example, the SICD may detect a tachyarrhythmia within a first electrical signal from a heart and determine, based on the tachyarrhythmia, to deliver anti-tachyarrhythmia shock therapy to the patient to treat the detected arrhythmia. The LPD may receive communication from the SICD requesting the LPD deliver anti-tachycardia pacing to the heart and determine, based on a second electrical signal from the heart sensed by the LPD, whether to deliver anti-tachycardia pacing (ATP) to the heart. In this manner, the SICD and LPD may communicate to coordinate ATP and/or cardioversion/defibrillation therapy. In another example, the LPD may be configured to deliver post-shock pacing after detecting delivery of anti-tachyarrhythmia shock therapy.
Abstract:
An implantable medical device comprises a sensing module configured to obtain electrical signals from one or more electrodes and a control module configured to process the electrical signals from the sensing module in accordance with a tachyarrhythmia detection algorithm to monitor for a tachyarrhythmia. The control module detects initiation of a pacing train delivered by a second implantable medical device, determines a type of the detected pacing train, and modifies the tachyarrhythmia detection algorithm based on the type of the detected pacing train.
Abstract:
The control module of a first pacemaker included in an implantable medical device system including the first pacemaker and a second pacemaker is configured to set a pacing escape interval in response to a far field pacing pulse sensed by the first pacemaker. The far field pacing pulse is a pacing pulse delivered by the second pacemaker. The pacing escape interval is allowed to continue without restarting the in response to a far field intrinsic event sensed by the first pacemaker during the pacing escape interval. The first pacemaker delivers a cardiac pacing pulse to the heart upon expiration of the pacing escape interval.
Abstract:
Implantable medical devices automatically switch from a normal mode of operation to an exposure mode of operation and back to the normal mode of operation. The implantable medical devices may utilize hysteresis timers in order to determine if entry and/or exit criteria for the exposure mode are met. The implantable medical devices may utilize additional considerations for entry to the exposure mode such as a confirmation counter or a moving buffer of sensor values. The implantable medical devices may utilize additional considerations for exiting the exposure mode of operation and returning to the normal mode, such as total time in the exposure mode, patient position, and high voltage source charge time in the case of devices with defibrillation capabilities.