摘要:
A system and method are provided for monitoring ischemic development. The system and method identify a non-physiologic event and obtain cardiac signals along multiple sensing vectors, wherein at least a portion of the sensing vectors extend to or from electrodes located proximate to the left ventricle. The system and method monitor a segment of interest in the cardiac signals obtained along the multiple sensing vectors to identify deviations in the segment of interest from a baseline. The system and method record at least one of timing or segment shift information associated with the deviations in the segments of interest; and identify at least one of size, direction of development or rate of progression of an ischemia region based on the at least one of timing or segment shift information.
摘要:
Embodiments include electrical leads and methods of using electrical leads that may be used for delivering both cardioversion/defibrillation signals and pacing signals and sensing to target tissue. Some of these embodiments may also be used to sense and transmit electrical signals from target tissue. Some electrical lead embodiments are configured to be delivered into a patient's intrapericardial space by non-invasive methods.
摘要:
An exemplary method includes selecting a first pair of electrodes to define a first vector and selecting a second pair of electrodes to define a second vector; acquiring position information during one or more cardiac cycles for the first and second pairs of electrodes wherein the acquiring comprises using each of the electrodes for measuring one or more electrical potentials in an electrical localization field established in the patient; and determining a dyssynchrony index by applying a cross-covariance technique to the position information for the first and the second vectors. Another method includes determining a phase shift based on the acquired position information for the first and the second vectors; and determining an interventricular delay based at least in part on the phase shift.
摘要:
A chamber or vasculature of a heart may be accessed via the pericardial space of the heart. Initially, the pericardial space may be accessed via a transmyocardial approach or a subxiphoid approach. A lead or other implantable apparatus may thus be routed into the pericardial space, through myocardial tissue and into the chamber or vasculature. The lead or other apparatus may be used to sense activity in or provide therapy to the heart.
摘要:
An exemplary method includes providing a mechanical activation time (MA time) for a myocardial location, the location defined at least in part by an electrode and the mechanical activation time determined at least in part by movement of the electrode; providing an electrical activation time (EA time) for the myocardial location; and determining an electromechanical delay (EMD) for the myocardial location based on the difference between the mechanical activation time (MA time) and the electrical activation time (EA time).
摘要:
A multi-axis chuck that rotates about at least two axes. Preferably, the axes are perpendicular. The multi-axis chuck includes a first portion, second portion, and third portion. Rear sides of the first portion and the second portion have a first mating portion that mates with a second mating portion provided on the second portion and the third portion, respectively. The mating portions enable the first portion and the second portion to be rotated about the axes. Preferably, the first portion rotates about a first axis independently of the second and third portions. Rotation of the second portion about a second axis preferably also rotates the first portion about the second axis. The multi-chuck is operatively connected to a motor, controller, and sensors. A user inputs a desired position into the controller that controls the motor. The motor rotates the multi-axis chuck to the desired position. The sensors are used to determine a position of the multi-axis chuck. The controller determines whether the position determined matches the desired position.
摘要:
Embodiments of the present invention recite a write gap structure for a magnetic recording head. In one embodiment, the write gap structure comprises at least one layer of inert material is disposed proximate to the P2 pole of a magnetic recording head. A layer of magnetic material is disposed between the layer of inert material and the P1 pedestal (P1P) of the magnetic recording head. In embodiments of the present invention, the write gap structure further comprises a second layer of inert material is disposed between the layer of magnetic material and the P1P of the magnetic recording head. In embodiments of the present invention, the write gap structure only overlies a portion of the write gap of the magnetic recording head with reference to the throat height dimension of the write gap.
摘要:
A power control system for use in an electronic device provided with a transforming module becoming self-contained upon connection with a power supply includes a switch module, a delay module, and a control module. The switch module turns on or off a power input route whereby the transforming module can supply power to the electronic device, and keeps the power input route at an off state while the transforming module remains unconnected to the power supply. The delay module performs a delay process and generates delay signals. The control module receives the delay signals generated and enables the switch module to turn on the power input route. The present invention prevents the stability of the electronic device from being deteriorated as a result of electric sparks induced by metallic friction and excessive instantaneous current while the electronic device is being connected to the power supply.
摘要:
An audio device protection system for use in an electronic device electrically connecting to an audio device is disclosed. The electronic device outputs an audio signal, a power on/off signal, and a trigger signal. The audio device protection system includes a switching unit electrically connected to the audio signal and the audio device and a control unit electrically connected to the trigger signal and the switching unit. The control unit outputs, upon receipt of the trigger signal, a control signal to control electrical connection/disconnection of the audio signal to/from the audio device by the switching unit, thus controlling timing of delivery of the electronic device-outputted audio signal to the audio device during a startup/shutdown procedure of the electronic device. Accordingly, switching on/off a power of the electronic device does not generate audio noise which may otherwise instantaneously trigger or shut down the audio device to the detriment thereof.
摘要:
A testing device for performing a white balance test on a display device of an electronic equipment is disclosed. The testing device includes a supporting body, a testing member, a position-adjusting member and a clipping member. The testing member is disposed on the supporting body and used to mask the display device and perform the white balance test on the display device. The testing member has a testing opening. The position-adjusting member is disposed on the supporting body for adjusting a position where the testing member is disposed on the supporting body. The clipping member presses the display device against the testing member when the position-adjusting member makes the testing member aligned with the display device such that the display device can be closely contacted with the testing member. Thus, the white balance test can be performed on the display device through the testing member.