Abstract:
The technology disclosed herein enables high availability bridging between Layer 2 (L2) networks. In a particular embodiment, a method includes high availability bridge cluster comprising a first bridge node and a second bridge node. The first and second bridge nodes include first and second active bridges and first and second standby bridges, respectively. The method provides, in the first active bridge, bridging network communications between two or more L2 networks. The second standby bridge acts as a failover bridge for the first active bridge. The method further provides generating a failure detection message that incorporates a hardware address of the first bridge node and transferring the failure detection message from the first bridge node to the second bridge node. In the second standby bridge, the method provides receiving the failure detection message and using the hardware address to synchronize bridging information between the first active bridge and the second standby bridge.
Abstract:
A logical routing element (LRE) having multiple designated instances for routing packets from physical hosts (PH) to a logical network is provided. A PH in a network segment with multiple designated instances can choose among the multiple designated instances for sending network traffic to other network nodes in the logical network according to a load balancing algorithm. Each logical interface (LIF) of an LRE is defined to be addressable by multiple identifiers or addresses, and each LIF identifier or address is assigned to a different designated instance.
Abstract:
A system provisions global logical entities that facilitate the operation of logical networks that span two or more datacenters. These global logical entities include global logical switches that provide L2 switching as well as global routers that provide L3 routing among network nodes in multiple datacenters. The global logical entities operate along side local logical entities that are for operating logical networks that are local within a datacenter.
Abstract:
A LRE (logical routing element) that have LIFs that are active in all host machines spanned by the LRE as well as LIFs that are active in only a subset of those spanned host machines is provided. A host machine having an active LIF for a particular L2 segment would perform the L3 routing operations for network traffic related to that L2 segment. A host machine having an inactive LIF for the particular L2 segment would not perform L3 routing operations for the network traffic of the L2 segment.
Abstract:
A system provisions global logical entities that facilitate the operation of logical networks that span two or more datacenters. These global logical entities include global logical switches that provide L2 switching as well as global routers that provide L3 routing among network nodes in multiple datacenters. The global logical entities operate along side local logical entities that are for operating logical networks that are local within a datacenter.
Abstract:
A system provisions global logical entities that facilitate the operation of logical networks that span two or more datacenters. These global logical entities include global logical switches that provide L2 switching as well as global routers that provide L3 routing among network nodes in multiple datacenters. The global logical entities operate along side local logical entities that are for operating logical networks that are local within a datacenter.
Abstract:
A logical routing element (LRE) having multiple designated instances for routing packets from physical hosts (PH) to a logical network is provided. A PH in a network segment with multiple designated instances can choose among the multiple designated instances for sending network traffic to other network nodes in the logical network according to a load balancing algorithm. Each logical interface (LIF) of an LRE is defined to be addressable by multiple identifiers or addresses, and each LIF identifier or address is assigned to a different designated instance.
Abstract:
A LRE (logical routing element) that have LIFs that are active in all host machines spanned by the LRE as well as LIFs that are active in only a subset of those spanned host machines is provided. A host machine having an active LIF for a particular L2 segment would perform the L3 routing operations for network traffic related to that L2 segment. A host machine having an inactive LIF for the particular L2 segment would not perform L3 routing operations for the network traffic of the L2 segment.
Abstract:
A LRE (logical routing element) that have LIFs that are active in all host machines spanned by the LRE as well as LIFs that are active in only a subset of those spanned host machines is provided. A host machine having an active LIF for a particular L2 segment would perform the L3 routing operations for network traffic related to that L2 segment. A host machine having an inactive LIF for the particular L2 segment would not perform L3 routing operations for the network traffic of the L2 segment.
Abstract:
Some embodiments provide a method for a set of central controllers that manages forwarding elements operating in a plurality of datacenters. The method receives a configuration for a bridge between (i) a logical L2 network that spans at least two datacenters and (ii) a physical L2 network. The configuration specifies a particular one of the datacenters for implementation of the bridge. The method identifies multiple managed forwarding elements that implement the logical L2 network and are operating in the particular datacenter. The method selects one of the identified managed forwarding elements to implement the bridge. The method distributes bridge configuration data to the selected managed forwarding element.