Abstract:
A packet based display interface arranged to couple a multimedia source device to a multimedia sink device is disclosed that includes a transmitter unit coupled to the source device arranged to receive a source packet data stream in accordance with a native stream rate, a receiver unit coupled to the sink device, and a linking unit coupling the transmitter unit and the receiver unit arranged to transfer a multimedia data packet stream formed of a number of multimedia data packets based upon the source packet data stream in accordance with a link rate between the transmitter unit and the receiver unit.
Abstract:
There is provided a sports ball capable of relieving the pain of the hands suffered from impact on the ball and having a soft feel and high flexibility. The sports ball comprises a spherical hollow rubber bladder (2) inflated with air injected into it, a fabric tape reinforcement layer (3) formed by winding a narrow adhesive-impregnated fabric tape (7) around a central spherical portion (6) of the rubber bladder about each of three axes of the rubber bladder with the exception of opposite spherical end portions (5) of the rubber bladder, whereby the fabric tape reinforcement layer is formed as orthogonal lap windings of the fabric tape over substantially all of the spherical surface of the rubber bladder, to provide a fabric tape wound ball core, and surface panels (4) adhered with adhesive to the fabric tape reinforcement layer on the rubber bladder, after vulcanization and forming of the fabric tape wound ball core.
Abstract:
A passive cable adaptor for connecting a data source device with a display device is described. The adaptor has a packet-based interface connector at one end, the connector having a positive main link pin, a negative main link pin, a positive auxiliary channel pin, and a negative auxiliary channel pin. Also at the same end is a serial interface connector, such as a serial interface connector. At the other end is an upgraded serial interface connector (e.g., enhanced serial interface) connector having high-speed transmission pins, high-speed receiving pins, and a ground pin, wherein multimedia content is transmitted over the cable adaptor and electrical power is supplied over the cable adaptor simultaneously.
Abstract:
Methods and systems for transmitting video pixel data from a transmitter component, such as a controller, to a receiver within a monitor are described. Video data is received at a transmitter at an incoming pixel rate based on a pixel clock. The data is transmitted to the receiver at a link symbol clock rate and is drained from the receiver at the pixel clock rate, which is regenerated by the receiver using the link symbol clock frequency, an M video value, and an N video value. The M video value (Mvid) is determined by the transmitter based on the incoming pixel rate and the N video value (Nvid) may be constant. An accumulator is used within the transmitter to ensure that the transmitter and receiver create a balanced system.
Abstract:
A packet based display interface arranged to couple a multimedia source device to a multimedia sink device is disclosed that includes a transmitter unit coupled to the source device arranged to receive a source packet data stream in accordance with a native stream rate, a receiver unit coupled to the sink device, and a linking unit coupling the transmitter unit and the receiver unit arranged to transfer a multimedia data packet stream formed of a number of multimedia data packets based upon the source packet data stream in accordance with a link rate between the transmitter unit and the receiver unit.
Abstract:
A packet based display interface configured to operate in a multimedia device in a network and methods to train the packet based display interface is disclosed. The packet based display interface includes a media transport block to communicate video packets across a first unidirectional link, a dual data transport block to communicate packet messages to and from client service blocks across a bidirectional link using multiple transport protocols, and a detection block to determine the addition or deletion of a network device using a second unidirectional link. Each transport protocol uses a different message format on the bidirectional link. The training methods include exchanging messages to determine transport protocol capabilities, training the bidirectional link and setting the transport protocols used. The first and second unidirectional links run in opposite directions, and both the unidirectional links and the bidirectional link use separate physical communication lines bundled together in a common cable.
Abstract:
A molecular beam source for use in thin-film accumulation, which enables the adjustment of the volume of a molecular beam, which is discharged per hour by using a needle valve, to be constant irrespective of a decrease in a thin-film element-forming material remaining within a crucible, contains heaters 32 and 42 for heating the thin-film element-forming materials “a” and “b” within crucibles 31 and 41, and valves 33 and 43 for adjusting the volumes to be discharged of molecules of the thin-film element forming materials “a” and “b”, which are generated within the crucibles 31 and 41. It further contains a controller for adjusting the opening of the valves 33 and 43 by servomotors 36 and 46 through feeding back information relating to the volumes of the molecular beams, which are obtained from film-thickness meters 16 and 26 for detecting the volume of molecular beams discharged towards the film-forming surface, a heating electric power source for supplying an electric power to heaters 32 and 42, and a controller for adjusting the electric power to be supplied to the heating electric power source depending upon the information relating to the volume of the molecular sources and information relating to the opening of the valves.
Abstract:
A molecular beam source for use in thin-film accumulation, which enables the adjustment of the volume of a molecular beam, which is discharged per hour by using a needle valve, to be constant irrespective of a decrease in a thin-film element-forming material remaining within a crucible, contains heaters 32 and 42 for heating the thin-film element-forming materials “a” and “b” within crucibles 31 and 41, and valves 33 and 43 for adjusting the volumes to be discharged of molecules of the thin-film element forming materials “a” and “b”, which are generated within the crucibles 31 and 41. It further contains a controller for adjusting the opening of the valves 33 and 43 by servomotors 36 and 46 through feeding back information relating to the volumes of the molecular beams, which are obtained from film-thickness meters 16 and 26 for detecting the volume of molecular beams discharged towards the film-forming surface, a heating electric power source for supplying an electric power to heaters 32 and 42, and a controller for adjusting the electric power to be supplied to the heating electric power source depending upon the information relating to the volume of the molecular sources and information relating to the opening of the valves.
Abstract:
An EPDM composition, which comprises 100 parts by weight of EPDM having an ethylene content of 50-58 wt. %, and a Mooney viscosity ML1+4 (100° C.) of 10-48, and 0.2-4.0 parts by weight of an organic peroxide as a cross-linking agent, has a distinguished blister resistance in a mixed state of chlorofluorocarbon gas/refrigerator oil, which has been a problem in practical use, and a distinguished moldability, as a rubber material for molding sealing materials for chlorofluorocarbon refrigerant including R134a. Sealing materials made from the EPDM composition by vulcanization-molding can provide EPDM-made sealing materials having less permeation leakage amount of chlorofluorocarbon refrigerant than that of hydrogenated NBR so far used as sealing materials in shaft sealing devices in compressors of automobile air conditioners.
Abstract:
A packet based display interface arranged to couple a multimedia source device to a multimedia sink device is disclosed that includes a transmitter unit coupled to the source device arranged to receive a source packet data stream in accordance with a native stream rate, a receiver unit coupled to the sink device, and a linking unit coupling the transmitter unit and the receiver unit arranged to transfer a multimedia data packet stream formed of a number of multimedia data packets based upon the source packet data stream in accordance with a link rate between the transmitter unit and the receiver unit.