摘要:
Disclosed herein is a composite core die comprising a reusable core die; and a disposable core die; wherein the disposable core die is in physical communication with the reusable core die; and further wherein surfaces of communication between the disposable core die and the reusable core die serve as barriers to prevent the leakage of a slurry that is disposed in the composite core die.
摘要:
An downstream plasma boundary layer shielding system includes film cooling apertures disposed through a wall having cold and hot surfaces and angled in a downstream direction from a cold surface of the wall to an outer hot surface of the wall. A plasma generator located downstream of the film cooling apertures is used for producing a plasma extending downstream over the film cooling apertures. Each plasma generator includes inner and outer electrodes separated by a dielectric material disposed within a groove in the outer hot surface. The wall may be part of a hollow airfoil or an annular combustor or exhaust liner. A method for operating the downstream plasma boundary layer shielding system includes forming a plasma extending in the downstream direction over the film cooling apertures along the outer hot surface of the wall. The method may further include operating the plasma generator in steady state or unsteady modes.
摘要:
A method for assembling a gas turbine engine is provided. The method includes providing a turbine nozzle including an outer band and an inner band, wherein each band includes a leading edge, a trailing edge, and a body extending therebetween. At least one of the outer band and the inner band has at least one radial tab extending outward therefrom. The method also includes coupling at least one seal between at least one of the radial tabs extending from the outer band and the inner band and a respective leading edge of the outer and inner band. The method also includes positioning at least one non-planar seal support against at least one portion of the seal.
摘要:
A turbine blade includes an airfoil, platform, shank, and dovetail integrally joined together. A cooling chamber is located under the platform and has a portal exposed outwardly from the shank. A damper seat surrounds the portal and is recessed under the platform for receiving a vibration damper to sealingly close the chamber across the portal.
摘要:
A method facilitates the assembly of a gas turbine engine. The method of assembly comprises providing a turbine nozzle including an inner band, an outer band, at least one vane extending between the inner and outer bands, and at least one leading edge fillet extending between the at least one vane and at least one of the inner and outer bands, wherein a leading edge of the at least one vane is downstream from the leading edges of the inner and outer bands, and coupling the turbine nozzle within the gas turbine engine such that the leading edge fillet is configured to facilitate minimizing vortex formation along the vane leading edge adjacent at least one of the inner and outer bands.
摘要:
A method for assembling a gas turbine engine is provided. The method comprises coupling a first turbine nozzle within the engine, coupling a second turbine nozzle circumferentially adjacent the first turbine nozzle such that a gap is defined between the first and second turbine nozzles and providing at least one spline seal including a substantially planar body. The method also comprises forming at least one retainer tab to extend outward from the body portion of the at least one spline seal, and inserting the at least one spline seal into a slot defined in at least one of the first and second turbine nozzles to facilitate reducing leakage through said gap, such that the at least one retainer tab facilitates retaining the retainer tab within the turbine nozzle slot.
摘要:
An airfoil for a gas turbine engine includes a root, a tip, a leading edge, a trailing edge, and opposed pressure and suction sidewalls extending generally along a radial axis. The airfoil includes a tip cap extending between the pressure and suction sidewalls; and spaced-apart suction-side and pressure-side tip walls extending radially outward from the tip cap to define a tip cavity therebetween. The pressure-side tip wall includes a continuously concave curved arcuate portion, at least a section of which extends circumferentially outward from a radial axis of the airfoil. At least a portion of the pressure-side tip wall is recessed from the pressure sidewall to define an outwardly facing tip shelf, such that the pressure-side tip wall and the tip shelf define a trough therebetween.
摘要:
A C-clip for a gas turbine engine includes an arcuate outer arm having a first radius of curvature; an arcuate, inner arm having a second radius of curvature which is substantially greater than the first radius of curvature; and an arcuate extending flange connecting the outer and inner arms. The flange, the outer arm, and the inner arm collectively define a generally C-shaped cross-section. A shroud assembly includes a shroud segment with a mounting flange, and a shroud hanger with an arcuate hook disposed in mating relationship to the mounting flange. An arcuate C-clip having inner and outer arms overlaps the hook and the mounting flange. The shroud segment and the C-clip are subject to thermal expansion at the hot operating condition. A dimension of one of the shroud segment and the C-clip are selected to produce a preselected dimensional relationship therebetween at the hot operating condition.
摘要:
A turbine blade includes an airfoil having pressure and suction sidewalls extending between leading and trailing edges and root and tip. The tip includes squealer ribs extending from a tip floor forming an open tip cavity. The rib along the pressure sidewall has a squared external corner, and a flute extends along the base of the rib at the tip floor.
摘要:
According to an embodiment of the invention, a method for repairing a coated high pressure turbine blade, which has been exposed to engine operation, to restore coated airfoil contour dimensions of the blade, and improve upon the prior bond coat is disclosed. The method comprises providing an engine run high pressure turbine blade including a base metal substrate made of a nickel-based alloy and having thereon a thermal barrier coating system. The thermal barrier coating system comprises a diffusion bond coat on the base metal substrate and a top ceramic thermal barrier coating comprising a yttria stabilized zirconia material. The top ceramic thermal barrier coating has a nominal thickness t. The method further comprises removing the thermal barrier coating system, wherein a portion of the base metal substrate also is removed, and determining the thickness of the base metal substrate removed. The portion of the base metal substrate removed has a thickness, Δt. The method also comprises applying a β phase NiAl overlay coating to the substrate, and determining the difference in thickness, Δx, between the β phase NiAl overlay coating and the previously removed bond coat. The method further comprises reapplying the top ceramic thermal barrier coating to a nominal thickness of t+Δt−Δx, wherein Δt compensates for the portion of removed base metal substrate. Advantageously, the coated airfoil contour dimensions of the high pressure turbine blade are restored to about the coated dimensions preceding the engine run.