摘要:
A sensor arrangement may be used to measure properties, such as optical properties, of a device arranged to process substrates. The sensor arrangement includes a substrate having the following: a plurality of sensor elements provided as an integrated circuit in the substrate, for each one of the plurality of sensor elements associated electronic circuitry comprising a processing circuit connected to the sensor element and an input/output interface connected to the processing circuit, and a power supply unit configured to supply operating power only to the electronic circuitry associated with one or more of the plurality of sensor elements which are in use. The at least one sensor element and possibly the processing electronics, the input/output unit, and/or the power supply unit may be provided as one or more integrated circuits or other structures in the substrate.
摘要:
The invention relates to a device comprising a first material (10) and a second material. (20) whereby the first and the second material are so provided towards each other as to form at least one focusing microstructure with a focal point (30) located outside of the first material.
摘要:
For lithographically manufacturing a device with a very high density, a design mask pattern (120) is distributed on a number of sub-patterns (120a, 120b, 120c) by means of a new method. The sub-patterns do not comprise “forbidden” structures (135) and can be transferred by conventional apparatus to a substrate layer to be patterned. For the transfer, a new stack of layers is used, which comprise a pair of a processing layer (22; 26) and an inorganic anti-reflection layer (24; 28) for each sub-pattern. After a first processing layer (26) has been patterned with a first sub-pattern, it is coated with a new resist layer (30) which is exposed with a second sub-pattern, and a second processing layer (22) under the first processing layer is processed with the second sub-pattern.
摘要:
Aberrations of an imaging system (PL) can be detected in an accurate and reliable way by imaging, by means of the imaging system, a test object having circular phase structure (22) on a photoresist (PR), developing the resis and scanning it with a scanning detection device (SEM) which is coupled to an image processor (IP). The circular phase structure is imaged in a ring structure (25) and each of several possible aberrations, like coma, astigmatism, three-point aberration, etc. causes a specific change in the shape of the inner contour (CI) and the outer contour (CE) of the ring and/or a change in the distance between these contours, so that the aberrations can be detected independently of each other.
摘要:
Aberrations of an imaging system can be detected in an accurate and reliable way by imaging, by means of the imaging system, a circular phase structure on a photoresist, developing the resist and scanning it with a scanning detection device which is coupled to an image processor. The circular phase structure is imaged in a ring structure and each of several possible aberrations, like coma, astigmatism, three-point aberration, etc. causes a specific change in the shape of the inner contour and the outer contour of the ring and/or a change in the distance between these contours, so that the aberrations can be detected independently of each other. The new method may be used for measuring a projection system for a lithographic projection apparatus.
摘要:
A method and apparatus for forming a pattern on a substrate (w), either or not via a mask pattern (c), are described. The radiation dose can be measured accurately and reliably by measuring a latent image of a new, asymmetrical test mark (TM) by means of an optical alignment device present in the apparatus or associated therewith, this latent image being formed by means of production radiation (PB) in the radiation-sensitive layer on the substrate.
摘要:
A method and apparatus for repetitively imaging a mask pattern (C) on a substrate (W) are described. The focusing of the projection lens system used for imaging and various other parameters of the apparatus and the projection lens system (PL), as well as illumination doses can be measured accurately and reliably, and measuring devices of the apparatus can be calibrated, by measuring an image of a new asymmetrical test mark formed in the photoresist on the substrate (W) by means of a projection beam (PB).