摘要:
The integration period of an imaging cell, or the time that an imaging cell is exposed to light energy, is substantially increased by utilizing a single-poly, electrically-programmable, read-only-memory (EPROM) structure to capture the light energy. Photogenerated electrons are formed in the channel region of the EPROM structure from the light energy. The photogenerated electrons are then accelerated into having ionizing collisions which, in turn, leads to electrons being injected onto the floating gate of the EPROM structure at a rate that is proportionate to the number of photons captured by the channel region.
摘要:
A capacitor structure is formed in a wedge-shaped trench by forming alternating layers of insulating material and conductive material in the trench such that each layer of conductive material formed in the trench is electrically isolated from adjacent layers of conductive material formed in the trench. A first electrical contact is formed to electrically link in parallel a first set of alternating layers of conductive material. A second electrical contact is formed to electrically link in parallel a second set of alternating layers of conductive material. The two electrically isolated sets of inter-linked layers of conductive material define the interdigitated capacitor structure.
摘要:
An implant is added at the interface between the source region of an MOS transistor and the well material to improve dynamic IR drop performance. The additional implant raises the underlying capacitance of the source region. This, in turn, provides for an increase in charge storage which, in turn, provides for an improved level of protection against dynamic IR drop.
摘要:
A semiconductor technology combines a normally off n-channel channel-junction insulated-gate field-effect transistor (“IGFET”) (104) and an n-channel surface-channel IGFET (100 or 160) to reduce low-frequency 1/f noise. The channel-junction IGFET is normally fabricated to be of materially greater gate dielectric thickness than the surface-channel IGFET so as to operate across a greater voltage range than the surface-channel IGFET. A p-channel surface-channel IGFET (102 or 162), which is typically fabricated to be of approximately the same gate-dielectric thickness as the n-channel surface-channel IGFET, is preferably combined with the two n-channel IGFETs to produce a complementary-IGFET structure. A further p-channel IGFET (106, 180, 184, or 192), which is typically fabricated to be of approximately the same gate dielectric thickness as the n-channel channel-junction IGFET, is also preferably included. The further p-channel IGFET can be a surface-channel or channel-junction device.
摘要翻译:半导体技术结合了正常n沟道沟道结绝缘栅场效应晶体管(“IGFET”)(104)和n沟道表面沟道IGFET(100或160),以降低低频1 / f 噪声。 沟道结IGFET通常被制造为具有比表面沟道IGFET大得多的栅介质厚度,以便在比表面沟道IGFET更大的电压范围内工作。 典型地制造为与n沟道表面沟道IGFET大致相同的栅介质厚度的p沟道表面沟道IGFET(102或162)优选地与两个n沟道IGFET组合以产生 互补IGFET结构。 还优选包括通常被制造为具有与n沟道沟道结IGFET大致相同的栅介质厚度的另外的p沟道IGFET(106,180,184或192)。 另外的p沟道IGFET可以是表面沟道或沟道结器件。
摘要:
An active pixel sensor cell including at least one photodiode and reset circuitry and an integrating varactor coupled to the photodiode, a method for reading out such a cell, and an image sensor including an array of such cells. The photodiode can be exposed to photons during an exposure interval to accumulate a sequence of subexposure charges at a first node of the photodiode. Each of the subexposure charges accumulates at the first node during a different subexposure interval of the exposure interval. The photodiode is reset during each of a sequence of reset intervals, each reset interval occurring before a different one of the subexposure intervals. An output signal indicative of an exposure charge accumulated at the storage node during the exposure interval can be asserted from the cell, where the exposure charge is indicative of a sum of all the subexposure charges.
摘要:
The present invention is directed to a photogate based pixel cell with an electronic shutter and which provides relatively low lag and high sensitivity for sensing infrared light reflected from objects. Additionally, this invention eliminates the need for a transfer gate in the pixel cell. In one embodiment, the reset and shutter transistors are implemented with PMOS transistors so that the pixel cell can have an increased dynamic range and a relatively high voltage swing. In another embodiment, the actual size of each pixel cell can be further reduced when the reset gate and the electronic shutter are implemented with NMOS transistors. Also, when a P− well is not disposed beneath the photogate, the ability of the pixel cell to sense infrared light is improved. Correlated double sampling can be used to improve the accuracy of the signal read out from the pixel cell.
摘要:
A vertical photodetector for detecting different wavelengths of light. The structure provides doped regions, which are separated by barrier regions. The doped regions detect photons corresponding to different wavelengths of light. Specifically, by detecting the amount of electrical charge collected by diodes positioned in the different doped regions, different wavelengths of light can be detected. The barrier regions inhibit the flow of electrical charges from one doped region into another doped region. The area of the doped regions can be increased, without increasing the capacitance of the diodes which are used to detect the electrical charges generated by light incident of the vertical photodetector.
摘要:
A semiconductor technology combines a normally off n-channel channel-junction insulated-gate field-effect transistor (“IGFET”) (104) and an n-channel surface-channel IGFET (100 or 160) to reduce low-frequency 1/f noise. The channel-junction IGFET is normally of materially greater gate dielectric thickness than the surface-channel IGFET so as to operate across a greater voltage range than the surface-channel IGFET. Alternatively or additionally, the channel-junction IGFET may conduct current through a field-induced surface channel. A p-channel surface-channel IGFET (102 or 162), which is typically of approximately the same gate-dielectric thickness as the n-channel surface-channel IGFET, is preferably combined with the two n-channel IGFETs to produce a complementary-IGFET structure. A further p-channel IGFET (106, 180, 184, or 192), which is typically of approximately the same gate dielectric thickness as the n-channel channel-junction IGFET, is also preferably included. The further p-channel IGFET can be a surface-channel or channel-junction device.
摘要翻译:半导体技术结合了正常n沟道沟道结绝缘栅场效应晶体管(“IGFET”)(104)和n沟道表面沟道IGFET(100或160),以降低低频1 / f 噪声。 沟道结IGFET通常具有比表面沟道IGFET大得多的栅介质厚度,以便在比表面沟道IGFET更大的电压范围内工作。 或者或另外,通道结IGFET可以传导电流通过场诱导的表面通道。 通常与n沟道表面沟道IGFET大致相同的栅介质厚度的p沟道表面沟道IGFET(102或162)优选与两个n沟道IGFET组合, IGFET结构。 还优选包括通常具有与n沟道沟道结IGFET大致相同的栅介质厚度的另外的p沟道IGFET(106,180,184或192)。 另外的p沟道IGFET可以是表面沟道或沟道结器件。