Abstract:
In a BSCR or BJT ESD clamp, the breakdown voltage and DC voltage tolerance are controlled by controlling the size of the collector of the BJT device by masking part of the collector.
Abstract:
A test structure and testing method are provided for characterizing the time-dependent drift in the parasitic PFET leakage current that flows along the sidewall of a deep trench isolation structure from the P-type active area to the P-type substrate in a semiconductor integrated circuit structure. The capacitive coupling characteristics of the deep trench isolation structure are used to control the electrical “bias” of the deep trench structure through the use of a large auxiliary trench mesh network that is formed as part of the deep trench structure. The trench mesh network can be placed adjacent to a Vdd ring or a ground ring and then, by using a ratioed capacitive voltage dividing network, the electrical potential at the trench can be controlled.
Abstract:
The trench leakage current of a deep trench isolation structure is measured. The deep trench isolation structure, which is filled with polysilicon, contacts both a first region of a first conductivity type and a second region of a second conductivity type, and is proximate to a third region of the first conductivity type formed in the second region. Test voltages are applied to the structures and the leakage current is measured.
Abstract:
When a high-voltage, such as from an ESD pulse, is placed across a silicon controlled rectifier, which includes an NPN transistor and a PNP transistor that is connected to the NPN transistor, the likelihood of punch through occurring between two regions of the rectifier is substantially reduced by forming the emitter of one transistor adjacent to the tails of the sinker down region of the other transistor.
Abstract:
A single junction interdigitated photodiode utilizes a stack of alternating highly doped first regions of a first conductivity type and highly doped second regions of a second conductivity type, which are formed below and contact the first regions, to collect photons. In addition, a highly doped sinker of a first conductivity type contacts each first region, and a highly doped sinker of a second conductivity type contacts each second region.
Abstract:
When a high-voltage, such as from an ESD pulse, is placed across a silicon controlled rectifier, which includes an NPN transistor and a PNP transistor that is connected to the NPN transistor, the likelihood of punch through occurring between two regions of the rectifier is substantially reduced by forming the emitter of one transistor adjacent to the tails of the sinker down region of the other transistor.
Abstract:
A capacitor structure is formed in a wedge-shaped trench by forming alternating layers of insulating material and conductive material in the trench such that each layer of conductive material formed in the trench is electrically isolated from adjacent layers of conductive material formed in the trench. A first electrical contact is formed to electrically link in parallel a first set of alternating layers of conductive material. A second electrical contact is formed to electrically link in parallel a second set of alternating layers of conductive material. The two electrically isolated sets of inter-linked layers of conductive material define the interdigitated capacitor structure.
Abstract:
A test structure and testing method are provided for characterizing the time-dependent drift in the parasitic PFET leakage current that flows along the sidewall of a deep trench isolation structure from the P-type active area to the P-type substrate in a semiconductor integrated circuit structure. The capacitive coupling characteristics of the deep trench isolation structure are used to control the electrical “bias” of the deep trench structure through the use of a large auxiliary trench mesh network that is formed as part of the deep trench structure. The trench mesh network can be placed adjacent to a Vdd ring or a ground ring and then, by using a ratioed capacitive voltage dividing network, the electrical potential at the trench can be controlled.
Abstract:
A system and method is disclosed that prevents the formation of a vertical bird's beak structure in the manufacture of a semiconductor device. A polysilicon filled trench is formed in a substrate of the semiconductor device. One or more composite layers are then applied over the trench and the substrate. A mask and etch process is then applied to etch the composite layers adjacent to the polysilicon filled trench. A field oxide process is applied to form field oxide portions in the substrate adjacent to the trench. Because no field oxide is placed over the trench there is no formation of a vertical bird's beak structure. A gate oxide layer is applied and a protection cap is formed over the polysilicon filled trench to protect the trench from unwanted effects of subsequent processing steps.
Abstract:
A power transistor structure uses metal drain and source strips with non-uniform widths to reduce variations in current density across the power transistor structure. The reductions in current density, in turn, reduce the source-to-drain turn on resistance and maximize the overall current carrying capacity of power transistor structure.