Abstract:
Methods, systems, and devices are described for operating a communications system using both licensed and unlicensed frequency bands. Unlicensed spectrum may be used as a primary band for transmitting data packets and TCP may be implemented for selectively transmitting (e.g., retransmitting) a subset of the transmitted data packets via licensed spectrum. Selective transmission of the subset of data packets via licensed spectrum may be based on a transmitter failing to receive and acknowledgment (ACK) message in response to one or more transmitted data packets on the unlicensed spectrum. Selective retransmission may be based on a transmitter detecting interference and/or it may be based on a receiver reporting information about channel conditions. In some cases, a transmitter may simultaneously receive channel condition information for both licensed and unlicensed spectrum. In other cases, unlicensed spectrum may be utilized for data packet transmission and licensed spectrum may be utilized for ACK messages.
Abstract:
The disclosure generally relates to position sensors, and more particularly to repair of carrier-phase cycle slips using displacement data. An apparatus for use in position sensing may include a displacement sensor, a positioning signal receiver, a memory, and a processor coupled to the displacement sensor, the positioning signal receiver, and the memory. The processor and memory may be configured to processor and memory are configured to detect a loss of lock of a first carrier tracking loop associated with the first set of carrier-phase measurements, wherein the first carrier tracking loop is associated with a first integer ambiguity, estimate, based on the displacement data, an ambiguity increment to the first integer ambiguity subsequent to the detected loss of lock, and resolve a second integer ambiguity associated with the second set of positioning signals based on the first integer ambiguity and the estimated ambiguity increment.
Abstract:
The disclosure generally relates to position sensors, and more particularly to outlier detection using spatial displacement data. An apparatus for use in position sensing may include a displacement sensor, a positioning signal receiver having a receiver clock, a memory, and a processor coupled to the displacement sensor, the positioning signal receiver, and the memory. The processor and memory may be configured to calculate a change in a receiver clock bias of the receiver clock based on range measurements and spatial-based displacement data, propagate a first range measurement based, at least in part, on the spatial-based displacement data and the change in the receiver clock bias, and determine an outlier range measurement based, at least in part, on the propagated first range measurement.
Abstract:
A range between a first wireless device and a second wireless device is estimated using a first mechanism based on messages transmitted over a first communication channel. The first communication channel is associated with a first radio access technology capability of the wireless devices. One or more metrics indicative of an accuracy of the range estimates provided by the first mechanism are obtained. A second mechanism to estimate a range between the first wireless device and the second wireless device may be implemented in favor of the first mechanism when the metric fails to satisfy a criterion. The second mechanism is based on unicast messages transmitted over a second communication channel. The second communication channel is associated with a second radio access technology capability of the wireless devices and may be the same as, or different from, the first communication channel.
Abstract:
Methods, systems, and devices are described for using location information to determine whether to use at least a portion of a dedicated short range communications (DSRC) spectrum. Current location information of a multi-mode device is determined. The multi-mode device is operating outside of the DSRC spectrum. The current location information is used to determine whether the multi-mode device is located outside of geographical region attributed to DSRC transmissions. Upon determining that the multi-mode device is located outside of the geographical region, at least a portion of the DSRC spectrum is used for transmissions by the multi-mode device.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided. The apparatus is a first BS. The apparatus determines a first channel between a second BS and a first UE served by a third BS, determines a second channel between the first base station and the first UE, and determines a first direction vector to be used by the second base station for sending a data transmission. The apparatus transmits a set of resource blocks to a second UE served by the first base station with a second direction vector determined based on the first channel, the second channel, and the first direction vector to be used by the second base station.
Abstract:
A UE receives information indicating a receive direction vector for a serving BS and a set of receive direction vectors for at least one interfering BS. The UE determines a channel between the UE and the serving BS and a set of channels between the UE and each of the at least one interfering BS. The UE determines a transmit direction vector to apply to modulated symbols for mapping to a set of resource blocks for an uplink transmission based on the channel, the set of channels, the receive direction vector, and the set of receive direction vectors. The UE determines an interference caused to the at least one interfering BS by the uplink transmission based on the transmit direction vector, the set of channels, and the set of receive direction vectors. The UE transmits information indicating the interference to the serving BS.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided. The apparatus is a first BS. The apparatus determines a first channel between a second BS and a first UE served by a third BS, determines a second channel between the first base station and the first UE, and determines a first direction vector to be used by the second base station for sending a data transmission. The apparatus transmits a set of resource blocks to a second UE served by the first base station with a second direction vector determined based on the first channel, the second channel, and the first direction vector to be used by the second base station.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided. The apparatus may be a UE. The UE receives pilot signals from a serving base station and at least one interfering base station. The UE determines phase rotations used by the serving base station and the at least one interfering base station for transmitting resource blocks. The UE determines channel feedback based on the received pilots signals and the determined phase rotations for each of the serving base station and the at least one interfering base station. The UE sends the channel feedback to the serving base station. The UE receives data based on the determined phase rotations.