Abstract:
Aspects of the present disclosure provide techniques and apparatus for user equipment initiated handover. Certain aspects include a method for wireless communications by a user equipment (UE) including determining a first signal metric between the UE and a first base station, while the UE has a connection established with the first base station. The method further includes determining a second signal metric between the UE and a second base station, while the UE does not have a connection established with the second base station. The method further includes determining that the second signal metric is stronger than the first signal metric. The method further includes declaring a radio link failure with the first base station based on determining that the second signal metric is stronger than the first signal metric. The method further includes establishing a connection with the second base station.
Abstract:
Methods, systems, and devices are described for wireless communication. A user equipment (UE) may signal a band-specific measurement gap indication based on the capability of a set of receivers to measure target frequency bands while monitoring a set of component carriers (CCs). The UE may receive a measurement gap configuration for a first component carrier (CC) associated with measuring the target frequency bands accounting for the band-specific measurement gap indication. The UE may then perform a measurement on one or more of the target frequency bands according to the measurement gap configuration while continuing to monitor other configured CCs for downlink messages and transmit uplink control messages during gaps configured for the first CC (e.g., using a different receiver). In some examples the measurement gap configuration message includes configuration options and the UE may select the measurement gap configuration for the first CC from the set of available options.
Abstract:
Methods and systems for re-establishing radio contact include, for example, a method for performing a wireless handoff for user equipment (UE) as the UE performs a handoff from a source extended Node-B (e-NB) to a target e-NB is disclosed. The method includes detecting a radio link failure (RLF) between the UE and the source e-NB by the UE, and maintaining an active communication service at a service layer of the UE after detecting the RLF and as the UE performs the handoff from the source e-NB to the target e-NB such that the communication service remains continuously active during the handoff, the communication service supporting a first communication between the UE and a third party.
Abstract:
Methods, systems, and devices are described for wireless communication. A user equipment (UE) may signal a band-specific measurement gap indication based on the capability of a set of receivers to measure target frequency bands while monitoring a set of component carriers (CCs). The UE may receive a measurement gap configuration for a first component carrier (CC) associated with measuring the target frequency bands accounting for the band-specific measurement gap indication. The UE may then perform a measurement on one or more of the target frequency bands according to the measurement gap configuration while continuing to monitor other configured CCs for downlink messages and transmit uplink control messages during gaps configured for the first CC (e.g., using a different receiver). In some examples the measurement gap configuration message includes configuration options and the UE may select the measurement gap configuration for the first CC from the set of available options.
Abstract:
Methods, systems, and devices for wireless communication are described. A user equipment (UE) may receive a measurement configuration on a first cell specifying a measurement gap for measuring cells on other frequencies. The UE may then measure a second cell and determine an offset between the timing of the two cells. If the measured frequency band is synchronized (or nearly synchronized), the length of the measurement gap may be reduced. In some cases, the UE may then make measurements on the second cell using a reduced measurement interval, and the UE may power down certain components during the rest of the measurement gap to conserve power. In other cases, the UE may coordinate with the serving cell to reduce the measurement gap to minimize the interruption caused by the gaps.
Abstract:
Methods and apparatuses of wireless communications are provided to dynamically determine capability information such that potential configuration and/or resource conflicts may be mitigated among multiple connections while one or more of on-going connections are not interrupted. A user equipment (UE) establishes one or more connections with a network. The UE allocates, in a first resource allocation, one or more resources of the UE to the one or more connections. The UE dynamically determines an instantaneous UE capability information (IUCI) of the UE in response to a change from the first resource allocation to a second resource allocation, the IUCI indicative of the capability of the UE during a predetermined time period. The UE transmits the IUCI to the network to mitigate potential resource allocation conflict among the one or more connections while maintaining at least one of the connections.
Abstract:
Methods, systems, and devices for wireless communication are described. Wireless devices may operate in an extended connected discontinuous reception (eDRX) mode to increase energy efficiency and extend battery life. Control signaling may be used to initiate or support the extended sleep cycles associated with eDRX operation. In some cases, a system frame number (SFN) extension may be implemented to record frame cycles and differentiate SFNs that occur in a first frame cycle from SFNs that occur in a second frame cycle. Control techniques to support eDRX operation and maintain network synchronicity and compatibility may also be employed. In some examples, a wireless system may broadcast extended or dedicated system information updates to an eDRX capable device or devices. In some cases, devices may adjust the rate at which radio link monitoring (RLM) measurements are taken to timely determine radio link failures (RLFs) in conjunction with eDRX operation.
Abstract:
Techniques for signaling carrier bandwidths supported by a user equipment (UE) for carrier aggregation are disclosed. A UE may be configured with a plurality of carriers for carrier aggregation. Each carrier may have one carrier bandwidth of a set of possible carrier bandwidths. The set of possible carrier bandwidths may be dependent on a band in which the carrier belongs. Multiple combinations of carrier bandwidths for the plurality of carriers may be possible. The UE may identify at least one supported carrier bandwidth combination for the plurality of carriers. Each of the supported carrier bandwidth combinations may include a particular carrier bandwidth for each configured carrier. The UE may send signaling indicative of the at least one supported carrier bandwidth combination. The UE may thereafter communicate on the plurality of carriers based on a carrier bandwidth combination selected from the supported carrier bandwidth combination(s).
Abstract:
Systems, methods and apparatus described herein include features that enable dual radio access. In one embodiment, the access point directs an access terminal through sequential measurements, which are selected by the access point based on the radio access capability of the access terminal, service preferences of the user and measurement reports. In a complementary method, an access terminal obtains the sequential measurements chosen by the access point. In another embodiment, the access point directs an access terminal through a set of measurements, which are selected by the access point based on the radio access capability of the access terminal and service preferences of the user. In another embodiment, an access terminal selects which subset of measurements to obtain based on the radio access capability of the access terminal and optionally service preferences of the user.
Abstract:
Measurements are conducted on one or more carriers in a case where an access terminal supports reception on multiple carriers. Upon determining that an access terminal is capable of concurrently receiving on a given set of carriers, a measurement is conducted on one or more carriers of the set while receiving on or more other carriers of the set. Conversely, upon determining that an access terminal is not capable of concurrently receiving on a given set of carriers, a measurement is conducted on one or more carriers of the set while not receiving on or more other carriers of the set. In addition, data transfers to or from an access terminal on a carrier may be restricted (e.g., data transfers not scheduled or only low priority data transfers scheduled) during one or more subframes before or after the access terminal conducts a measurement on another carrier.