摘要:
A memory string comprises: a first semiconductor layer including a columnar portion extending in a stacking direction on a substrate; a first charge storage layer surrounding the columnar portion; and a plurality of first conductive layers stacked on the substrate so as to surround the first charge storage layer. A select transistor comprises: a second semiconductor layer in contact with an upper surface of the columnar portion and extending in the stacking direction; a second charge storage layer surrounding the second semiconductor layer; and a second conductive layer deposited above the first conductive layer to surround the second charge storage layer. The second charge storage layer is formed from a layer downward of the second conductive layer to an upper end vicinity of the second conductive layer, and is not formed in a layer upward of the upper end vicinity.
摘要:
A nonvolatile semiconductor memory device includes: a memory unit; and a control unit. The memory unit includes a multilayer structure including electrode films and inter-electrode insulating films alternately stacked in a first direction; a semiconductor pillar piercing the multilayer structure in the first direction; a memory layer provided between the semiconductor pillar and the electrode films; a inner insulating film provided between the memory layer and the semiconductor pillar; a outer insulating film provided between the memory layer and the electrode films; and a wiring electrically connected to the first semiconductor pillar. In erasing operation, the control unit sets the first wiring at a first potential and sets the electrode film at a second potential lower than the first potential, and then sets the first wiring at a third potential and sets the electrode film at a fourth potential higher than the third potential.
摘要:
A non-volatile semiconductor storage device includes a plurality of memory strings each having a plurality of electrically rewritable memory cells connected in series. Each of the memory strings comprising: a first semiconductor layer including a columnar portion extending in a vertical direction with respect to a substrate; a plurality of first conductive layers formed to surround side surfaces of the columnar portions via insulation layers, and formed at a certain pitch in the vertical direction, the first conductive layers functioning as floating gates of the memory cells; and a plurality of second conductive layers formed to surround the first conductive layers via insulation layers, and functioning as control electrodes of the memory cells. Each of the first conductive layers has a length in the vertical direction that is shorter than a length in the vertical direction of each of the second conductive layers.
摘要:
A nonvolatile semiconductor memory device includes: a semiconductor substrate; a multilayer structure; a semiconductor pillar; a third insulating film; and a fourth insulating film layer. The a multilayer structure is provided on the semiconductor substrate and including a plurality of constituent multilayer bodies stacked in a first direction perpendicular to a major surface of the semiconductor substrate. Each of the plurality of constituent multilayer bodies includes an electrode film provided parallel to the major surface, a first insulating film, a charge storage layer provided between the electrode film and the first insulating film, and a second insulating film provided between the charge storage layer and the electrode film. The semiconductor pillar penetrates through the multilayer structure in the first direction. The third insulating film is provided between the semiconductor pillar and the electrode film. The fourth insulating film is provided between the semiconductor pillar and the charge storage layer.
摘要:
A non-volatile semiconductor storage device has a memory string including a plurality of electrically rewritable memory cells connected in series. The non-volatile semiconductor storage device also has a protruding layer formed to protrude upward with respect to a substrate. The memory string includes: a plurality of first conductive layers laminated on the substrate; a first semiconductor layer formed to penetrate the plurality of first conductive layers; and an electric charge storage layer formed between the first conductive layers and the first semiconductor layer, and configured to be able to store electric charges. Each of the plurality of first conductive layers includes: a bottom portion extending in parallel to the substrate; and a side portion extending upward with respect to the substrate along the protruding layer at the bottom portion. The protruding layer has a width in a first direction parallel to the substrate that is less than or equal to its length in a lamination direction.
摘要:
A nonvolatile semiconductor memory device, includes: a stacked structural unit including electrode films alternately stacked with inter-electrode insulating films; a first and second semiconductor pillars piercing the stacked structural unit; a connection portion semiconductor layer to electrically connect the first and second semiconductor pillars; a connection portion conductive layer opposing the connection portion semiconductor layer; a memory layer, an inner insulating film, and an outer insulating film provided between the first and second semiconductor layers and the electrode films and between the connection portion semiconductor layer and the connection portion conductive layer. At least a portion of a face of the connection portion conductive layer opposing the outer insulating film is a curved surface having a recessed configuration on a side of the outer insulating film.
摘要:
A non-volatile semiconductor storage device includes a plurality of memory element groups, each of the memory element groups having a plurality of memory elements, each of the memory elements having a resistance-change element and a Schottky diode connected in series. Each of the memory element groups includes: a first columnar layer extending in a lamination direction; a first insulation layer formed on a side surface of the first columnar layer and functioning as the resistance-change element; and a first conductive layer formed to surround the first columnar layer via the first insulation layer. The first conductive layer is formed of metal. The first columnar layer is formed of a semiconductor having such a impurity concentration that the first conductive layer and the semiconductor configure the Schottky diode.
摘要:
A stacked body with a plurality of dielectric films and electrode films alternately stacked therein is provided. The electrode film is divided into a plurality of control gate electrodes extending in one direction. The stacked body is provided with a U-pillar penetrating through the select gate electrodes and the control gate electrodes, having one end connected to a source line, and having the other end connected to a bit line. Moreover, a different potential is applied to uppermost one of the control gate electrodes than that applied to the other control gate electrodes.
摘要:
According to one embodiment, a nonvolatile semiconductor memory device includes a substrate, a stacked body, a semiconductor pillar, a charge storage film, and a drive circuit. The stacked body is provided on the substrate. The stacked body includes a plurality of insulating films alternately stacked with a plurality of electrode films. A through-hole is made in the stacked body to align in a stacking direction. The semiconductor pillar is buried in an interior of the through-hole. The charge storage film is provided between the electrode film and the semiconductor pillar. The drive circuit supplies a potential to the electrode film. The diameter of the through-hole differs by a position in the stacking direction. The drive circuit supplies a potential to reduce a potential difference with the semiconductor pillar as a diameter of the through-hole piercing the electrode film decreases.
摘要:
A semiconductor memory device provided with a cell array section and a peripheral circuit section, the device includes: a back gate electrode; a stacked body provided on the back gate electrode; a plurality of semiconductor pillars extending in a stacking direction; connection members, each of the connection members connecting one of the semiconductor pillars to another one of the semiconductor pillars; a back-gate electrode contact applying a potential to the back gate electrode; a gate electrode provided in the peripheral circuit section; and a gate electrode contact applying a potential to the gate electrode, the back gate electrode and the gate electrode respectively including: a lower semiconductor layer; a conductive layer provided on the lower semiconductor layer; and an upper semiconductor layer provided on the conductive layer, the connection members being provided in or on the upper semiconductor layer, the back-gate electrode contact and the gate electrode contact being in contact with the conductive layer.