Abstract:
Provided are a method and apparatus for interpolating an image. The method includes: selecting a first filter, from among a plurality of different filters, for interpolating between pixel values of integer pixel units, according to an interpolation location; and generating at least one pixel value of at least one fractional pixel unit by interpolating between the pixel values of the integer pixel units by using the selected first filter.
Abstract:
A video encoding method and apparatus and video decoding method and apparatus generate a restored image having a minimum error with respect to an original image based on offset merge information indicating whether offset parameters of a current block and at least one neighboring block from among blocks of video are identical.
Abstract:
A video encoding method and apparatus and a video decoding method and apparatus. In the video encoding method, a first predicted coding unit of a current coding unit that is to be encoded is produced, a second predicted coding unit is produced by changing a value of each pixel of the first predicted coding unit by using each pixel of the first predicted coding unit and at least one neighboring pixel of each pixel, and the difference between the current coding unit and the second predicted coding unit is encoded, thereby improving video prediction efficiency.
Abstract:
A video encoding method and apparatus and a video decoding method and apparatus. In the video encoding method, a first predicted coding unit of a current coding unit that is to be encoded is produced, a second predicted coding unit is produced by changing a value of each pixel of the first predicted coding unit by using each pixel of the first predicted coding unit and at least one neighboring pixel of each pixel, and the difference between the current coding unit and the second predicted coding unit is encoded, thereby improving video prediction efficiency.
Abstract:
A video decoding and video encoding method of performing inter prediction in a bi-directional motion prediction mode, in which a prediction pixel value of a current block may be generated by not only using a pixel value of a first reference block of a first reference picture and a pixel value of a second reference block of a second reference picture, but also using a first gradient value of the first reference block and a second gradient value of the second reference block, in a bi-directional motion prediction mode. Accordingly, encoding and decoding efficiency may be increased since a prediction block similar to an original block may be generated.
Abstract:
An image decoding method and apparatus according to an embodiment may extract, from a bitstream, a quantization coefficient generated through core transformation, secondary transformation, and quantization; generate an inverse-quantization coefficient by performing inverse quantization on the quantization coefficient; generate a secondary inverse-transformation coefficient by performing secondary inverse-transformation on a low frequency component of the inverse-quantization coefficient, the secondary inverse-transformation corresponding to the secondary transformation; and perform core inverse-transformation on the secondary inverse-transformation coefficient, the core inverse-transformation corresponding to the core transformation.
Abstract:
Provided are a method and apparatus for performing transformation and inverse transformation on a chroma block by using a variable transform kernel, during video encoding and decoding processes. A video decoding method includes: obtaining, from a bitstream, chroma multi-transform kernel information indicating whether a chroma transform kernel for inverse transformation of a chroma block is determined to be among a plurality of chroma transform kernels; while determining whether the chroma transform kernel is determined to be among the plurality of chroma transform kernels according to the chroma multi-transform kernel information, determining whether to determine the chroma transform kernel by using a luma transform kernel; and performing inverse transformation on the chroma block by using the chroma transform kernel.
Abstract:
Provided is a method of decoding an image, the method including determining at least one reference region to be referenced by a target region in the image to which a low-quality coding mode is applied; extracting a certain type of information from the determined at least one reference region; and changing pixel values of the target region, based on the extracted type of information.
Abstract:
An image decoding method and apparatus according to an embodiment may extract, from a bitstream, a quantization coefficient generated through core transformation, secondary transformation, and quantization; generate an inverse-quantization coefficient by performing inverse quantization on the quantization coefficient; generate a secondary inverse-transformation coefficient by performing secondary inverse-transformation on a low frequency component of the inverse-quantization coefficient, the secondary inverse-transformation corresponding to the secondary transformation; and perform core inverse-transformation on the secondary inverse-transformation coefficient, the core inverse-transformation corresponding to the core transformation.
Abstract:
The present disclosure relates to signaling of sample adaptive offset (SAO) parameters determined to minimize an error between an original image and a reconstructed image in video encoding and decoding operations. An SAO decoding method includes obtaining context-encoded leftward SAO merge information and context-encoded upward SAO merge information from a bitstream of a largest coding unit (MCU); obtaining SAO on/off information context-encoded with respect to each color component, from the bitstream; if the SAO on/off information indicates to perform SAO operation, obtaining absolute offset value information for each SAO category bypass-encoded with respect to each color component, from the bitstream; and obtaining one of band position information and edge class information bypass-encoded with respect to each color component, from the bitstream.