Abstract:
This disclosure generally provides an input device that includes a matrix sensor that includes a plurality of sensor electrodes arranged in rows on a common surface or plane. The input device may include a plurality of sensor modules coupled to the sensor electrodes that measure capacitive sensing signals corresponding to the electrodes. Instead of measuring sensor electrodes that are in the same column, the embodiments herein simultaneously measure capacitive sensing signals on at least two sensor electrodes that are in the same row. In one example, the sensor electrodes in the row being measured are spaced the same distance from a side of a substrate coupling the electrodes to the sensor modules and may have approximately the same electrical time constant.
Abstract:
In an example, a processing system for a capacitive sensing device includes a sensor module comprising sensor circuitry configured to drive a plurality of sensor electrodes with modulated signals to acquire resulting signals from the plurality of sensor electrodes. The processing system includes a determination module configured to compare a plurality of measurements determined from the resulting signals against a first threshold corresponding to a satisfactory ground condition and a second threshold corresponding to an interference metric. The determination module is further configured to adjust a sensing threshold based on a number of particular measurements of the plurality of measurements that satisfy the second threshold and fail to satisfy the first threshold.
Abstract:
An example integrated display device and capacitive sensing device having an input surface includes a plurality of sensor electrodes. Each of the plurality of sensor electrodes includes at least one common electrode configured for display updating and capacitive sensing. The device further includes at least one conductive electrode, wherein the plurality of sensor electrodes are disposed between the input surface and the at least one conductive electrode and wherein the plurality of sensor electrodes are configured to deflect toward the conductive electrode. The device further includes a processing system, coupled to the plurality of sensor electrodes, configured to detect changes in absolute capacitance of at least a portion of the plurality of sensor electrodes, and determine force information for an input object based on the changes in absolute capacitance.
Abstract:
A processing system, input device, and method are disclosed to provide active input device support for a capacitive sensing device. The method includes operating, during a first time period, a plurality of sensor electrodes to receive an input signal from an active input device at a processing system, and determining an exclusion region based on a determined position of the active input device during the first time period. The method further includes operating, during a different second time period, the plurality of sensor electrodes to receive capacitive sensing data corresponding to a passive input device. A portion of the plurality of sensor electrodes corresponding to the exclusion region is excluded from use in determining input to the processing system during the second time period.
Abstract:
Embodiments described herein include an input device, a display device having a capacitive sensing device, a processing system and a method for detecting presence of an input object using a capacitive sensing device. In one embodiment, an input device includes a plurality of sensor electrodes arranged in a planar matrix array. Each sensor electrode is coupled to unique routing trace and has an identical geometric plan form that is symmetrical about a center of area of the sensor electrode. The geometric plan form of each sensor electrode includes core and a plurality of protrusions extending outward from the core. The protrusions are configured to overlap with protrusions extending outward from each adjacent sensor electrode of the matrix array.
Abstract:
Embodiments of the present invention generally provide shield electrodes for shielding one or more conductive routing traces from one or more receiver electrodes in an input device comprising a display device integrated with a sensing device to reduce the capacitive coupling between the conductive routing traces and the receiver electrodes. The shield electrode may be configured to reduce the effect of an input object on the capacitive coupling between the conductive routing traces and the receiver electrodes. In other embodiments, end portions of common electrodes shield the receiver electrodes from the conductive routing traces, thereby reducing the capacitive coupling between the receiver electrodes and the conductive routing traces.
Abstract:
A processing system (and associated input device and method) is disclosed that includes a display module configured to drive a display signal onto a plurality of sensor electrodes for updating a display, and a sensor module configured to communicate with the plurality of sensor electrodes. The sensor module is configured to, in a first mode of operation, operate the plurality of sensor electrodes to receive an active input from an active input device, and in a second mode of operation, operate the plurality of sensor electrodes to receive capacitive sensing data from a passive input device. The processing system further includes a determination module configured to determine a position of the active input device based on a harmonic of the active input signal.
Abstract:
This disclosure generally provides an input device that includes a multi-layered capacitive sensor which includes a first layer disposed over a second layer that contains a plurality of sensor electrodes coupled to respective traces. The first and second layers form a capacitive sensing stack where the first layer is between the second layer and a touch surface for interacting with the input object. The first and second layers may be disposed on either the same substrate or different substrates in the stack. In one embodiment, the first layer includes electrically floating electrodes and at least one guard electrode. These components may align with respective components in the second layer. For example, the electrically floating electrodes in the first layer may at least partially cover the sensor electrodes in the second layer.
Abstract:
Embodiments of the present invention generally provide an integrated input device. The integrated input device includes a plurality of sensor electrode sets including a plurality of common electrode sets, a plurality of gate electrodes, and a gate selector. A processing system is configured to drive the sensor electrode sets for capacitive sensing during a plurality of sensing periods and update display lines by driving the common electrode sets during display update periods. A sensor electrode of a first sensor electrode set that is driven last during a first sensing period and a sensor electrode of a second sensor electrode set that is driven first during a second sensing period are spatially non-sequential sensor electrodes. The first display update period, second display update period, and third display update period are non-consecutive and non-overlapping with the first sensing period, the second sensing period, and the third display update period, respectively.
Abstract:
Embodiments described herein include a method and apparatus for capacitive sensing in input devices integrated with a display device. In one embodiment, a processing system for a display device comprising an integrated capacitive sensing device is provided that includes a display driver module, a transmitter module, and a receiver module. The display driver and transmitter modules are configured to operate in a display update mode and a sleep mode. The receiver module is configured to, while operating in a doze mode, communicate with and trigger the transmitter module to enter the active sensing mode while the display driver module remains in the sleep mode when presence of an object is detected based on the resulting signals.