Abstract:
A backlight device, a holographic display that includes the backlight device, and a method of manufacturing a holographic optical element are provided. The backlight device includes a light guide plate configured to guide light emitted by a light source, a first holographic optical element configured to expand light that has propagated through the light guide plate and that has a multi-layered structure, and a second holographic optical element configured to concentrate light reflected by the first holographic optical element.
Abstract:
A backlight unit for a three-dimensional (3D) image display includes a light guiding plate configured to guide light; a light source configured to emit the light to the light guiding plate; and a diffraction grating structure provided on a surface of the light guiding plate, the diffraction grating structure configured to diffract the light emitted from the surface of the light guiding plate, and including diffracting gratings having different heights.
Abstract:
A method for processing a three-dimensional (3D) image includes acquiring a frame of a color image and a frame of a depth image, and generating a frame by combining the acquired frame of the color image with the acquired frame of the depth image. The generating of the frame includes combining a line of the color image with a corresponding line of the depth image.
Abstract:
A coherent backlight unit and a 3D image display device including the coherent backlight unit are provided. The coherent backlight unit includes a light source, a light guide plate, a first diffraction grating, a second diffraction grating, and a reflective optical element. The light source irradiates a coherent light and the reflective optical element reflects the coherent light that is propagating toward one of the side surfaces from the inner side of the light guide plate toward the inner side of the light guide plate.
Abstract:
An interactive 3D display apparatus and method are provided. The interactive 3D display apparatus includes a hand sensing module configured to acquire a hand image by detecting a hand of a user and a user interaction module configured to generate a virtual object adjustment parameter by analyzing user-intended information about the hand based on the hand image acquired by the hand sensing module and comparing an analysis result with predefined user scenarios, an image rendering module configured to set a scene according to the generated virtual object adjustment parameter, generate image data by rendering the set scene, and convert the generated image data into display data, and a 3D display configured to display a 3D image including a virtual object in which a change intended by the user has been reflected according to the display data.
Abstract:
A light deflector includes a first light deflecting member disposed on a transparent substrate and has a refractive index that varies depending on a magnitude of an electric field applied thereto. The light deflector may adjust the refractive index by applying electric fields differently according to regions of the first light deflecting member or time divisions. The light deflector may have a smaller size than a light deflector including an optical device, and may easily adjust the refractive index.
Abstract:
A multi-view point 3D display apparatus using an active optical device is provided. The active optical device may change a path of light without a substantial drop of image resolution.
Abstract:
A surface light source device is provided. The surface light source device includes a light source, a beam splitter configured to split a light irradiated from the light source into a plurality of light beams each having a different path, a diffusion unit configured to diffuse the plurality of light beams split by the beam splitter into a surface light, and a collimating unit configured to arrange the plurality of light beams diffused from the diffusion unit in one direction.
Abstract:
Provided is an optically addressable spatial light modulator (OASLM)-based holographic display and a method of operating the same. The display includes an addressing unit including a light source unit emitting a plurality of recording beams, a driving mirror array including driving mirrors that each reflect a recording beam incident thereon, and a mirror member array including mirror members that each obliquely reflect a recording beam incident thereon, in which each of the driving mirrors corresponds to one of the mirror members. The recording beams, which are transmitted by the addressing unit, are focused onto the OASLM by micro lenses of a lenslet array. The OASLM is optically addressed by the recording beams focused by the micro lenses of the lenslet array and thus modulates and diffracts a reproduction beam, incident thereon from a reproduction beam providing unit, and thus a holographic image is reproduced.
Abstract:
A display including an electrowetting prism array is provided. The display includes: a light source, a 2-dimensional (2D) display for providing an image using light from the light source, a prism array in which a refractive power of one or more prisms of the prism array is adjustablein real time, and an optical element which increases a refraction of light transmitted therethrough. In the display, the optical element may be disposed in front of or behind the prism array. The optical element may be a convex lens, a Fresnel lens, a holographic optical element (HOE), a diffraction optical element (DOE), or a second electrowetting prism array. The convex lens may be a variable focus lens.